基于核磁共振信息的心脏PET图像重构

Zahra Ashouri, Chad R. Hunter, B. Spencer, Guobao Wang, R. Dansereau, R. deKemp
{"title":"基于核磁共振信息的心脏PET图像重构","authors":"Zahra Ashouri, Chad R. Hunter, B. Spencer, Guobao Wang, R. Dansereau, R. deKemp","doi":"10.1109/NSS/MIC42677.2020.9507993","DOIUrl":null,"url":null,"abstract":"Positron emission tomography (PET) is used to observe processes within the human body using radioactive tracers. Quality of PET images is compromised by statistical noise, especially in the heart where cardiac and respiratory motion occur. Image prior information is generally useful for improving PET image quality. Sources of prior anatomic information include computed tomography (CT) or magnetic resonance imaging (MRI). In this work, we used MR information in the kernel framework to help reconstruct cardiac PET images and compared it with the kernel reconstruction from PET data only. The kernel-based reconstruction method [1], incorporates prior information in the reconstruction algorithm with the use of kernels. Our results show kernel-based image reconstruction using MR prior anatomic information gives numerically equivalent results to the original kernel method that uses composite frames to reconstruct dynamic PET images.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"10 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel-based Reconstruction of Cardiac PET Images Using MR Information\",\"authors\":\"Zahra Ashouri, Chad R. Hunter, B. Spencer, Guobao Wang, R. Dansereau, R. deKemp\",\"doi\":\"10.1109/NSS/MIC42677.2020.9507993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positron emission tomography (PET) is used to observe processes within the human body using radioactive tracers. Quality of PET images is compromised by statistical noise, especially in the heart where cardiac and respiratory motion occur. Image prior information is generally useful for improving PET image quality. Sources of prior anatomic information include computed tomography (CT) or magnetic resonance imaging (MRI). In this work, we used MR information in the kernel framework to help reconstruct cardiac PET images and compared it with the kernel reconstruction from PET data only. The kernel-based reconstruction method [1], incorporates prior information in the reconstruction algorithm with the use of kernels. Our results show kernel-based image reconstruction using MR prior anatomic information gives numerically equivalent results to the original kernel method that uses composite frames to reconstruct dynamic PET images.\",\"PeriodicalId\":6760,\"journal\":{\"name\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"10 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS/MIC42677.2020.9507993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9507993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正电子发射断层扫描(PET)使用放射性示踪剂来观察人体内的过程。PET图像的质量受到统计噪声的影响,特别是在心脏和呼吸运动发生的地方。图像先验信息通常有助于提高PET图像质量。先前解剖信息的来源包括计算机断层扫描(CT)或磁共振成像(MRI)。在这项工作中,我们使用核框架中的MR信息来帮助重建心脏PET图像,并将其与仅从PET数据重建的核进行了比较。基于核的重构方法[1],利用核将先验信息融入到重构算法中。我们的研究结果表明,使用MR先验解剖信息的基于核的图像重建与使用复合帧重建动态PET图像的原始核方法在数值上等效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel-based Reconstruction of Cardiac PET Images Using MR Information
Positron emission tomography (PET) is used to observe processes within the human body using radioactive tracers. Quality of PET images is compromised by statistical noise, especially in the heart where cardiac and respiratory motion occur. Image prior information is generally useful for improving PET image quality. Sources of prior anatomic information include computed tomography (CT) or magnetic resonance imaging (MRI). In this work, we used MR information in the kernel framework to help reconstruct cardiac PET images and compared it with the kernel reconstruction from PET data only. The kernel-based reconstruction method [1], incorporates prior information in the reconstruction algorithm with the use of kernels. Our results show kernel-based image reconstruction using MR prior anatomic information gives numerically equivalent results to the original kernel method that uses composite frames to reconstruct dynamic PET images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance of Dual-Ended Readout PET Detectors Based on SiPMs with Different Microcell Sizes Neural Network-based Inter-crystal Scatter Event Positioning in a PET System Design Based on 3D Position Sensitive Detectors An e-LINAC driven PGNAA system for concealed drug inspection Design of a Multi-Technology Pre-Clinical SPECT System Comprehensive Simulation and Design of 3D Silicon Sensors for Enhanced Timing Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1