{"title":"非晶硅光伏组件发展综述","authors":"D.E. Carlson","doi":"10.1016/0379-6787(91)90060-3","DOIUrl":null,"url":null,"abstract":"<div><p>Amorphous silicon (a-Si) photovoltaic (PV) modules are generally manufactured in a single-junction p-i-n configuration and in sites ranging from a few square centimeters to about 4000 cm<sup>2</sup>. These modules are being used in a number of both indoor and outdoor low wattage (less than 20 W<sub>p</sub> (peak watt)) applications, but have not found widespread use in most higher wattage power applications owing to relatively low stabilized conversion efficiencies (approximately 4%–5%). The recent improvements in the performance and stability of a-Si based multijunction modules indicates that these modules should soon start to appear in the higher wattage outdoor applications. When multijunction modules are manufactured in totally automated facilities, the manufacturing costs should fall below $1 per W<sub>p</sub>, and these modules should then start penetrating the grid-connected power generation markets.</p></div>","PeriodicalId":101172,"journal":{"name":"Solar Cells","volume":"30 1","pages":"Pages 277-283"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0379-6787(91)90060-3","citationCount":"4","resultStr":"{\"title\":\"Overview of amorphous silicon photovoltaic module development\",\"authors\":\"D.E. Carlson\",\"doi\":\"10.1016/0379-6787(91)90060-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amorphous silicon (a-Si) photovoltaic (PV) modules are generally manufactured in a single-junction p-i-n configuration and in sites ranging from a few square centimeters to about 4000 cm<sup>2</sup>. These modules are being used in a number of both indoor and outdoor low wattage (less than 20 W<sub>p</sub> (peak watt)) applications, but have not found widespread use in most higher wattage power applications owing to relatively low stabilized conversion efficiencies (approximately 4%–5%). The recent improvements in the performance and stability of a-Si based multijunction modules indicates that these modules should soon start to appear in the higher wattage outdoor applications. When multijunction modules are manufactured in totally automated facilities, the manufacturing costs should fall below $1 per W<sub>p</sub>, and these modules should then start penetrating the grid-connected power generation markets.</p></div>\",\"PeriodicalId\":101172,\"journal\":{\"name\":\"Solar Cells\",\"volume\":\"30 1\",\"pages\":\"Pages 277-283\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0379-6787(91)90060-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0379678791900603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Cells","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0379678791900603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overview of amorphous silicon photovoltaic module development
Amorphous silicon (a-Si) photovoltaic (PV) modules are generally manufactured in a single-junction p-i-n configuration and in sites ranging from a few square centimeters to about 4000 cm2. These modules are being used in a number of both indoor and outdoor low wattage (less than 20 Wp (peak watt)) applications, but have not found widespread use in most higher wattage power applications owing to relatively low stabilized conversion efficiencies (approximately 4%–5%). The recent improvements in the performance and stability of a-Si based multijunction modules indicates that these modules should soon start to appear in the higher wattage outdoor applications. When multijunction modules are manufactured in totally automated facilities, the manufacturing costs should fall below $1 per Wp, and these modules should then start penetrating the grid-connected power generation markets.