无加权因子的四电平T-NNPC逆变器模型预测控制

Zhituo Ni, M. Narimani, José R. Rodríguez
{"title":"无加权因子的四电平T-NNPC逆变器模型预测控制","authors":"Zhituo Ni, M. Narimani, José R. Rodríguez","doi":"10.1109/APEC42165.2021.9487042","DOIUrl":null,"url":null,"abstract":"The finite control set model predictive control (FCS-MPC) has obtained a lot of attention for power converters due to its advantages of high performance and multi-objective capability. In conventional MPC formulation, the multi-objective capability is achieved through designing a cost function with delicate weighting factors. The choice of the weighing factors influences the system performance or even stability in some cases. To avoid this problem, this paper proposes a finite control set model predictive control (FCS-MPC) scheme that achieves multi-objectives without introducing any weighting factors. The proposed MPC scheme is validated on a four-level T-NNPC inverter where the multi-objective such as current tracking, floating capacitor balancing, and common-mode voltage (CMV) reduction are all desired. Compared with the conventional cost-function-based MPC scheme, the MPC controller design procedures is simplified without sacrificing the overall performance. The simulations validate the performance of the proposed MPC scheme.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"26 1","pages":"2133-2138"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model Predictive Control of a Four-Level T-NNPC Inverter without Weighting Factors\",\"authors\":\"Zhituo Ni, M. Narimani, José R. Rodríguez\",\"doi\":\"10.1109/APEC42165.2021.9487042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finite control set model predictive control (FCS-MPC) has obtained a lot of attention for power converters due to its advantages of high performance and multi-objective capability. In conventional MPC formulation, the multi-objective capability is achieved through designing a cost function with delicate weighting factors. The choice of the weighing factors influences the system performance or even stability in some cases. To avoid this problem, this paper proposes a finite control set model predictive control (FCS-MPC) scheme that achieves multi-objectives without introducing any weighting factors. The proposed MPC scheme is validated on a four-level T-NNPC inverter where the multi-objective such as current tracking, floating capacitor balancing, and common-mode voltage (CMV) reduction are all desired. Compared with the conventional cost-function-based MPC scheme, the MPC controller design procedures is simplified without sacrificing the overall performance. The simulations validate the performance of the proposed MPC scheme.\",\"PeriodicalId\":7050,\"journal\":{\"name\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"26 1\",\"pages\":\"2133-2138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC42165.2021.9487042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有限控制集模型预测控制(FCS-MPC)以其高性能和多目标性能等优点在电力变流器中得到了广泛的关注。在传统的MPC公式中,通过设计具有精细加权因子的成本函数来实现多目标能力。在某些情况下,称重因子的选择会影响系统的性能甚至稳定性。为了避免这一问题,本文提出了一种不引入任何权重因子实现多目标的有限控制集模型预测控制(FCS-MPC)方案。在四电平T-NNPC逆变器上验证了MPC方案,该方案同时具有电流跟踪、浮电容平衡和共模电压降低等多目标。与传统的基于成本函数的MPC方案相比,在不牺牲整体性能的前提下,简化了MPC控制器的设计程序。仿真结果验证了所提MPC方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Predictive Control of a Four-Level T-NNPC Inverter without Weighting Factors
The finite control set model predictive control (FCS-MPC) has obtained a lot of attention for power converters due to its advantages of high performance and multi-objective capability. In conventional MPC formulation, the multi-objective capability is achieved through designing a cost function with delicate weighting factors. The choice of the weighing factors influences the system performance or even stability in some cases. To avoid this problem, this paper proposes a finite control set model predictive control (FCS-MPC) scheme that achieves multi-objectives without introducing any weighting factors. The proposed MPC scheme is validated on a four-level T-NNPC inverter where the multi-objective such as current tracking, floating capacitor balancing, and common-mode voltage (CMV) reduction are all desired. Compared with the conventional cost-function-based MPC scheme, the MPC controller design procedures is simplified without sacrificing the overall performance. The simulations validate the performance of the proposed MPC scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and Solutions for Non-Inverting Buck-Boost Converters Parameter Estimator-based Power Control Strategy of Microgrid Considering Nonlinear Inductor Analysis and Evaluation of Air-core Two-coil Wireless Power Transfer System Configurations Selective Coordination of GaN-Based Solid State Circuit Breakers 3300-V SiC MOSFET Short-Circuit Reliability and Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1