{"title":"基于部分可观察随机对偶动态规划框架的大规模财务规划","authors":"J. Lee, Do-Gyun Kwon, Yongjae Lee, J. Kim, W. Kim","doi":"10.1080/14697688.2023.2221296","DOIUrl":null,"url":null,"abstract":"The multi-stage stochastic programming (MSP) approach is widely used to solve financial planning problems owing to its flexibility. However, the size of an MSP problem grows exponentially with the number of stages, and such problem can easily become computationally intractable. Financial planning problems often consider planning horizons of several decades, and thus, the curse of dimensionality can become a critical issue. Stochastic dual dynamic programming (SDDP), a sampling-based decomposition algorithm, has emerged to resolve this issue. While SDDP has been successfully implemented in the energy domain, few applications of SDDP are found in the finance domain. In this study, we identify the major obstacle in using SDDP to solve financial planning problems to be the stagewise independence assumption and propose a partially observable SDDP (PO-SDDP) framework to overcome such limitations. We argue that the PO-SDDP framework, which models uncertainties using discrete-valued partially observable Markov states and introduces feasibility cuts, can properly address large-scale financial planning problems.","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"2 1","pages":"1341 - 1360"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large-scale financial planning via a partially observable stochastic dual dynamic programming framework\",\"authors\":\"J. Lee, Do-Gyun Kwon, Yongjae Lee, J. Kim, W. Kim\",\"doi\":\"10.1080/14697688.2023.2221296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-stage stochastic programming (MSP) approach is widely used to solve financial planning problems owing to its flexibility. However, the size of an MSP problem grows exponentially with the number of stages, and such problem can easily become computationally intractable. Financial planning problems often consider planning horizons of several decades, and thus, the curse of dimensionality can become a critical issue. Stochastic dual dynamic programming (SDDP), a sampling-based decomposition algorithm, has emerged to resolve this issue. While SDDP has been successfully implemented in the energy domain, few applications of SDDP are found in the finance domain. In this study, we identify the major obstacle in using SDDP to solve financial planning problems to be the stagewise independence assumption and propose a partially observable SDDP (PO-SDDP) framework to overcome such limitations. We argue that the PO-SDDP framework, which models uncertainties using discrete-valued partially observable Markov states and introduces feasibility cuts, can properly address large-scale financial planning problems.\",\"PeriodicalId\":20747,\"journal\":{\"name\":\"Quantitative Finance\",\"volume\":\"2 1\",\"pages\":\"1341 - 1360\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/14697688.2023.2221296\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/14697688.2023.2221296","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Large-scale financial planning via a partially observable stochastic dual dynamic programming framework
The multi-stage stochastic programming (MSP) approach is widely used to solve financial planning problems owing to its flexibility. However, the size of an MSP problem grows exponentially with the number of stages, and such problem can easily become computationally intractable. Financial planning problems often consider planning horizons of several decades, and thus, the curse of dimensionality can become a critical issue. Stochastic dual dynamic programming (SDDP), a sampling-based decomposition algorithm, has emerged to resolve this issue. While SDDP has been successfully implemented in the energy domain, few applications of SDDP are found in the finance domain. In this study, we identify the major obstacle in using SDDP to solve financial planning problems to be the stagewise independence assumption and propose a partially observable SDDP (PO-SDDP) framework to overcome such limitations. We argue that the PO-SDDP framework, which models uncertainties using discrete-valued partially observable Markov states and introduces feasibility cuts, can properly address large-scale financial planning problems.
期刊介绍:
The frontiers of finance are shifting rapidly, driven in part by the increasing use of quantitative methods in the field. Quantitative Finance welcomes original research articles that reflect the dynamism of this area. The journal provides an interdisciplinary forum for presenting both theoretical and empirical approaches and offers rapid publication of original new work with high standards of quality. The readership is broad, embracing researchers and practitioners across a range of specialisms and within a variety of organizations. All articles should aim to be of interest to this broad readership.