多模型自适应控制的一种新技术:序列参数判别和混合参数矢量

A. Cezayirli
{"title":"多模型自适应控制的一种新技术:序列参数判别和混合参数矢量","authors":"A. Cezayirli","doi":"10.1109/ASCC.2013.6606401","DOIUrl":null,"url":null,"abstract":"We propose a new methodology in order to provide faster convergence in adaptive control of a class of nonlinear plants. Currently, each model in a multi-model adaptive system is evaluated as a whole, using a cost function derived from estimation errors. Therefore the number of fixed models required for improvement in transient response becomes quite large, for the plants having several unknown parameters. The proposed scheme removes this difficulty by considering each parameter sequentially and individually; and provides better convergence as compared to classical multi-model adaptive systems by using an assumption that a decrease in any element of the parameter error vector results in decrease in the state estimation error and vice-versa.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new technique in multi-model adaptive control: Sequential parameter discrimination and hybrid parameter vector\",\"authors\":\"A. Cezayirli\",\"doi\":\"10.1109/ASCC.2013.6606401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new methodology in order to provide faster convergence in adaptive control of a class of nonlinear plants. Currently, each model in a multi-model adaptive system is evaluated as a whole, using a cost function derived from estimation errors. Therefore the number of fixed models required for improvement in transient response becomes quite large, for the plants having several unknown parameters. The proposed scheme removes this difficulty by considering each parameter sequentially and individually; and provides better convergence as compared to classical multi-model adaptive systems by using an assumption that a decrease in any element of the parameter error vector results in decrease in the state estimation error and vice-versa.\",\"PeriodicalId\":6304,\"journal\":{\"name\":\"2013 9th Asian Control Conference (ASCC)\",\"volume\":\"14 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th Asian Control Conference (ASCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASCC.2013.6606401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了在一类非线性对象的自适应控制中提供更快的收敛性,我们提出了一种新的方法。目前,多模型自适应系统中的每个模型都是作为一个整体来评估的,使用由估计误差得出的代价函数。因此,对于具有多个未知参数的装置,改善瞬态响应所需的固定模型的数量变得相当大。该方案通过顺序和单独考虑每个参数来消除这一困难;与经典多模型自适应系统相比,通过假设参数误差向量的任何元素的减少都会导致状态估计误差的减少,反之亦然,从而提供更好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new technique in multi-model adaptive control: Sequential parameter discrimination and hybrid parameter vector
We propose a new methodology in order to provide faster convergence in adaptive control of a class of nonlinear plants. Currently, each model in a multi-model adaptive system is evaluated as a whole, using a cost function derived from estimation errors. Therefore the number of fixed models required for improvement in transient response becomes quite large, for the plants having several unknown parameters. The proposed scheme removes this difficulty by considering each parameter sequentially and individually; and provides better convergence as compared to classical multi-model adaptive systems by using an assumption that a decrease in any element of the parameter error vector results in decrease in the state estimation error and vice-versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable double resonant controller for fast image scanning of atomic force microscope FA system integration using robotic intelligent componets Parameter identification of bacterial growth bioprocesses using particle swarm optimization Velocity planning to optimize traction losses in a City-Bus Equipped with Permanent Magnet Three-Phase Synchronous Motors Stabilization of uncertain discrete time-delayed systems via delta operator approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1