通过地震模拟振动台再现高层建筑地面运动的新型控制策略

Yuteng Cao , Zhe Qu , Xiaodong Ji
{"title":"通过地震模拟振动台再现高层建筑地面运动的新型控制策略","authors":"Yuteng Cao ,&nbsp;Zhe Qu ,&nbsp;Xiaodong Ji","doi":"10.1016/j.eqrea.2023.100236","DOIUrl":null,"url":null,"abstract":"<div><p>To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters (EDPs), a three-layer testbed named Nonstructural Element Simulator on Shake Table (NEST) has been developed. The testbed consists of three consecutive floors of steel structure. The bottom two floors provide a space to accommodate a full-scale room. To fully explore the flexibility of NEST, we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy. The control strategy contains two parts: an inverse dynamic compensation via simulation of feedback control systems (IDCS) algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed. The key aspects of the control strategy were introduced in this paper. Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21<sup>st</sup> floor of a 42-story high-rise building. The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20% errors within the specified frequency range.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 1","pages":"Article 100236"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000337/pdfft?md5=56eb5863fe49dfb77de8599767ef0cba&pid=1-s2.0-S2772467023000337-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel control strategy for reproducing the floor motions of high-rise buildings by earthquake-simulating shake tables\",\"authors\":\"Yuteng Cao ,&nbsp;Zhe Qu ,&nbsp;Xiaodong Ji\",\"doi\":\"10.1016/j.eqrea.2023.100236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters (EDPs), a three-layer testbed named Nonstructural Element Simulator on Shake Table (NEST) has been developed. The testbed consists of three consecutive floors of steel structure. The bottom two floors provide a space to accommodate a full-scale room. To fully explore the flexibility of NEST, we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy. The control strategy contains two parts: an inverse dynamic compensation via simulation of feedback control systems (IDCS) algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed. The key aspects of the control strategy were introduced in this paper. Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21<sup>st</sup> floor of a 42-story high-rise building. The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20% errors within the specified frequency range.</p></div>\",\"PeriodicalId\":100384,\"journal\":{\"name\":\"Earthquake Research Advances\",\"volume\":\"4 1\",\"pages\":\"Article 100236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772467023000337/pdfft?md5=56eb5863fe49dfb77de8599767ef0cba&pid=1-s2.0-S2772467023000337-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Research Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772467023000337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467023000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了能够对具有多个工程参数(EDPs)的全尺寸非结构元件的抗震性能进行实验评估,我们开发了一个名为振动台非结构元件模拟器(NEST)的三层试验台。试验台由三层连续的钢结构组成。底部两层提供了一个可容纳全尺寸房间的空间。为了充分发挥 NEST 的灵活性,我们提出了一种新颖的控制策略,用于为试验台生成所需的振动台输入时间历程,从而高精度地跟踪相关建筑物的目标楼层运动。该控制策略包括两个部分:通过模拟反馈控制系统(IDCS)进行反动态补偿的算法和基于改进的试验台非线性数值模型的离线迭代程序。本文介绍了控制策略的主要方面。实验测试模拟了一栋 42 层高层建筑 21 层办公用房的地震响应。测试结果表明,所提出的控制策略可以在指定频率范围内以小于 20% 的误差再现相关建筑物的目标楼层运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel control strategy for reproducing the floor motions of high-rise buildings by earthquake-simulating shake tables

To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters (EDPs), a three-layer testbed named Nonstructural Element Simulator on Shake Table (NEST) has been developed. The testbed consists of three consecutive floors of steel structure. The bottom two floors provide a space to accommodate a full-scale room. To fully explore the flexibility of NEST, we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy. The control strategy contains two parts: an inverse dynamic compensation via simulation of feedback control systems (IDCS) algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed. The key aspects of the control strategy were introduced in this paper. Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21st floor of a 42-story high-rise building. The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20% errors within the specified frequency range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Site classification methodology using support vector machine: A study Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods Data merging methods for S-wave velocity and azimuthal anisotropy from different regions Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1