{"title":"基于模型的员工薪酬预测方法","authors":"Andreea L. Erciulescu, Jean D. Opsomer","doi":"10.1111/rssc.12587","DOIUrl":null,"url":null,"abstract":"<p>The demand for official statistics at fine levels is motivating researchers to explore estimation methods that extend beyond the traditional survey-based estimation. For this work, the challenge originated with the US Bureau of Labor Statistics, who conducts the National Compensation Survey to collect compensation data from a nationwide sample of establishments. The objective is to obtain predictions of the wage and non-wage components of compensation for a large number of employment domains defined by detailed job characteristics. Survey estimates are only available for a small subset of these domains. To address the objective, we developed a bivariate hierarchical Bayes model that jointly predicts the wage and non-wage compensation components for a large number of employment domains defined by detailed job characteristics. We also discuss solutions to some practical challenges encountered in implementing small area estimation methods in large-scale settings, including methods for defining the prediction space, for constructing and selecting the information that serves as model input, and for obtaining stable survey variance and covariance estimates.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"71 5","pages":"1503-1520"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A model-based approach to predict employee compensation components\",\"authors\":\"Andreea L. Erciulescu, Jean D. Opsomer\",\"doi\":\"10.1111/rssc.12587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The demand for official statistics at fine levels is motivating researchers to explore estimation methods that extend beyond the traditional survey-based estimation. For this work, the challenge originated with the US Bureau of Labor Statistics, who conducts the National Compensation Survey to collect compensation data from a nationwide sample of establishments. The objective is to obtain predictions of the wage and non-wage components of compensation for a large number of employment domains defined by detailed job characteristics. Survey estimates are only available for a small subset of these domains. To address the objective, we developed a bivariate hierarchical Bayes model that jointly predicts the wage and non-wage compensation components for a large number of employment domains defined by detailed job characteristics. We also discuss solutions to some practical challenges encountered in implementing small area estimation methods in large-scale settings, including methods for defining the prediction space, for constructing and selecting the information that serves as model input, and for obtaining stable survey variance and covariance estimates.</p>\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"71 5\",\"pages\":\"1503-1520\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12587\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12587","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A model-based approach to predict employee compensation components
The demand for official statistics at fine levels is motivating researchers to explore estimation methods that extend beyond the traditional survey-based estimation. For this work, the challenge originated with the US Bureau of Labor Statistics, who conducts the National Compensation Survey to collect compensation data from a nationwide sample of establishments. The objective is to obtain predictions of the wage and non-wage components of compensation for a large number of employment domains defined by detailed job characteristics. Survey estimates are only available for a small subset of these domains. To address the objective, we developed a bivariate hierarchical Bayes model that jointly predicts the wage and non-wage compensation components for a large number of employment domains defined by detailed job characteristics. We also discuss solutions to some practical challenges encountered in implementing small area estimation methods in large-scale settings, including methods for defining the prediction space, for constructing and selecting the information that serves as model input, and for obtaining stable survey variance and covariance estimates.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.