B. P. Backx, Brunno Rech Pedrosa, Thais Delazare, Fern, A. Damasceno, Otávio Augusto Leitão dos Santos
{"title":"绿色合成纳米银:花椰菜提取物在医疗保健智能纺织材料中的分散效率和抗菌潜力研究","authors":"B. P. Backx, Brunno Rech Pedrosa, Thais Delazare, Fern, A. Damasceno, Otávio Augusto Leitão dos Santos","doi":"10.4172/2324-8777.1000236","DOIUrl":null,"url":null,"abstract":"In the history of mankind, it is feasible to find clothing and medical uses of plants. Metals from bulk to nano proportions were also somehow always present. Uses of metallic nanoparticles have been increasing over the years in applications such as textile industry, remarkably the silver ones. The standard silver nanoparticle synthesis methods can be expensive and cause damage to the environment. Due to that fact, many efforts are being made to elaborate ecofriendly synthesis routes that provide good stability and dispersion in the medium. In this work, peel and leaf extracts from Plinia cauliflora (jabuticaba) are used as a dispersion medium to the silver nanoparticles synthesized with glucose and starch, characterized using Ultraviolet–visible spectroscopy (UV-Vis), Scanning Electronic Microscope (SEM), energy-dispersive spectroscopy (EDX), Nanosight; and preliminarily tested for their antifungal efficiency. The silver nanoparticles are present and confirmed due to the analysis of UV-Vis and dispersed as seen in the generated micrograph. There's also antifungal activity in fungi colonies isolated from the human face and an absorbance peak in the peel extract that may be the influence of the anthocyanins present in the peel's pigment.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"34 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Green Synthesis of Silver Nanoparticles: A Study of the Dispersive Efficiency and Antimicrobial Potential of the Extracts of Plinia Cauliflora forApplication in Smart Textiles Materials for Healthcare\",\"authors\":\"B. P. Backx, Brunno Rech Pedrosa, Thais Delazare, Fern, A. Damasceno, Otávio Augusto Leitão dos Santos\",\"doi\":\"10.4172/2324-8777.1000236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the history of mankind, it is feasible to find clothing and medical uses of plants. Metals from bulk to nano proportions were also somehow always present. Uses of metallic nanoparticles have been increasing over the years in applications such as textile industry, remarkably the silver ones. The standard silver nanoparticle synthesis methods can be expensive and cause damage to the environment. Due to that fact, many efforts are being made to elaborate ecofriendly synthesis routes that provide good stability and dispersion in the medium. In this work, peel and leaf extracts from Plinia cauliflora (jabuticaba) are used as a dispersion medium to the silver nanoparticles synthesized with glucose and starch, characterized using Ultraviolet–visible spectroscopy (UV-Vis), Scanning Electronic Microscope (SEM), energy-dispersive spectroscopy (EDX), Nanosight; and preliminarily tested for their antifungal efficiency. The silver nanoparticles are present and confirmed due to the analysis of UV-Vis and dispersed as seen in the generated micrograph. There's also antifungal activity in fungi colonies isolated from the human face and an absorbance peak in the peel extract that may be the influence of the anthocyanins present in the peel's pigment.\",\"PeriodicalId\":16457,\"journal\":{\"name\":\"Journal of Nanomaterials & Molecular Nanotechnology\",\"volume\":\"34 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials & Molecular Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2324-8777.1000236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials & Molecular Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2324-8777.1000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green Synthesis of Silver Nanoparticles: A Study of the Dispersive Efficiency and Antimicrobial Potential of the Extracts of Plinia Cauliflora forApplication in Smart Textiles Materials for Healthcare
In the history of mankind, it is feasible to find clothing and medical uses of plants. Metals from bulk to nano proportions were also somehow always present. Uses of metallic nanoparticles have been increasing over the years in applications such as textile industry, remarkably the silver ones. The standard silver nanoparticle synthesis methods can be expensive and cause damage to the environment. Due to that fact, many efforts are being made to elaborate ecofriendly synthesis routes that provide good stability and dispersion in the medium. In this work, peel and leaf extracts from Plinia cauliflora (jabuticaba) are used as a dispersion medium to the silver nanoparticles synthesized with glucose and starch, characterized using Ultraviolet–visible spectroscopy (UV-Vis), Scanning Electronic Microscope (SEM), energy-dispersive spectroscopy (EDX), Nanosight; and preliminarily tested for their antifungal efficiency. The silver nanoparticles are present and confirmed due to the analysis of UV-Vis and dispersed as seen in the generated micrograph. There's also antifungal activity in fungi colonies isolated from the human face and an absorbance peak in the peel extract that may be the influence of the anthocyanins present in the peel's pigment.