渐进式板料成形制造复杂零件的刀具轨迹规划

Zilin Jiang, Shuheng Liao, A. Slocum, D. Leem, K. Ehmann, Jian Cao
{"title":"渐进式板料成形制造复杂零件的刀具轨迹规划","authors":"Zilin Jiang, Shuheng Liao, A. Slocum, D. Leem, K. Ehmann, Jian Cao","doi":"10.1115/1.4053751","DOIUrl":null,"url":null,"abstract":"\n Incremental sheet forming (ISF) offers great flexibility in producing complex sheet parts as compared with conventional sheet forming processes where part-specific die sets are required to form a product. While there are many potential applications of ISF in various industries, toolpath planning for multifeature parts remains a leading challenge hindering the wide adoption of ISF. In this study, a criterion based on the gradient of the target surface was established for determining the appropriate feature forming sequence. Based on the analysis of the gradients of the surface, multifeature geometries were separated into two categories: “plane-referenced” and “surface-referenced.” Experimental investigations of forming a multifeature air intake as an example were carried out to demonstrate the proposed criterion and feature forming sequence. The results show that the choice of the optimal sequence depends on the type of geometry formed. The proposed criterion extends existing toolpath strategies for relatively regular geometries, where features are formed from flat or inclined bases to more complex geometries with features on a curved basis. This work will be of interest to both design and manufacturing communities.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toolpath Planning for Manufacturing of Complex Parts Through Incremental Sheet Forming\",\"authors\":\"Zilin Jiang, Shuheng Liao, A. Slocum, D. Leem, K. Ehmann, Jian Cao\",\"doi\":\"10.1115/1.4053751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Incremental sheet forming (ISF) offers great flexibility in producing complex sheet parts as compared with conventional sheet forming processes where part-specific die sets are required to form a product. While there are many potential applications of ISF in various industries, toolpath planning for multifeature parts remains a leading challenge hindering the wide adoption of ISF. In this study, a criterion based on the gradient of the target surface was established for determining the appropriate feature forming sequence. Based on the analysis of the gradients of the surface, multifeature geometries were separated into two categories: “plane-referenced” and “surface-referenced.” Experimental investigations of forming a multifeature air intake as an example were carried out to demonstrate the proposed criterion and feature forming sequence. The results show that the choice of the optimal sequence depends on the type of geometry formed. The proposed criterion extends existing toolpath strategies for relatively regular geometries, where features are formed from flat or inclined bases to more complex geometries with features on a curved basis. This work will be of interest to both design and manufacturing communities.\",\"PeriodicalId\":8652,\"journal\":{\"name\":\"ASME Open Journal of Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Open Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4053751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

增量板成形(ISF)提供了很大的灵活性,在生产复杂的板零件,与传统的板成形工艺,部分特定的模具需要形成一个产品。虽然ISF在各个行业中有许多潜在的应用,但多特征零件的刀具路径规划仍然是阻碍ISF广泛采用的主要挑战。在本研究中,建立了一个基于目标表面梯度的判据来确定合适的特征形成顺序。在分析表面梯度的基础上,将多特征几何结构分为“平面参考”和“表面参考”两类。以形成多特征进气道为例进行了实验研究,验证了所提出的准则和特征形成顺序。结果表明,最优序列的选择取决于所形成的几何形状的类型。提出的标准扩展了现有的相对规则几何形状的刀具路径策略,其中特征从平坦或倾斜的基础形成到具有曲线基础特征的更复杂的几何形状。这项工作将引起设计界和制造界的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toolpath Planning for Manufacturing of Complex Parts Through Incremental Sheet Forming
Incremental sheet forming (ISF) offers great flexibility in producing complex sheet parts as compared with conventional sheet forming processes where part-specific die sets are required to form a product. While there are many potential applications of ISF in various industries, toolpath planning for multifeature parts remains a leading challenge hindering the wide adoption of ISF. In this study, a criterion based on the gradient of the target surface was established for determining the appropriate feature forming sequence. Based on the analysis of the gradients of the surface, multifeature geometries were separated into two categories: “plane-referenced” and “surface-referenced.” Experimental investigations of forming a multifeature air intake as an example were carried out to demonstrate the proposed criterion and feature forming sequence. The results show that the choice of the optimal sequence depends on the type of geometry formed. The proposed criterion extends existing toolpath strategies for relatively regular geometries, where features are formed from flat or inclined bases to more complex geometries with features on a curved basis. This work will be of interest to both design and manufacturing communities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1