基于Gensim Word2Vec和K-Means聚类算法的自动文本摘要

Mofiz Mojib Haider, Md. Farhad Hossin, Hasibur Rashid Mahi, Hossain Arif
{"title":"基于Gensim Word2Vec和K-Means聚类算法的自动文本摘要","authors":"Mofiz Mojib Haider, Md. Farhad Hossin, Hasibur Rashid Mahi, Hossain Arif","doi":"10.1109/TENSYMP50017.2020.9230670","DOIUrl":null,"url":null,"abstract":"The significance of text summarization in the Natural Language Processing (NLP) community has now expanded because of the staggering increase in virtual textual materials. Text summary is the process created from one or multiple texts which convey important insight in a little form of the main text. Multiple text summarization technique assists to pick indispensable points of the original texts reducing time and effort require reading the whole document. The question was approached from a different point of view, in a different domain by using different concepts. Extractive and abstractive are the two main methods of summing up text. Though extractive summary is primarily concerned with what summary content the frequency of words, phrases, and sentences from the original document should be used. This research proposes a sentence based clustering algorithm (K-Means) for a single document. For feature extraction, we have used Gensim word2vec which is intended to automatically extract semantic topics from documents in the most efficient way possible.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"6 1","pages":"283-286"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Automatic Text Summarization Using Gensim Word2Vec and K-Means Clustering Algorithm\",\"authors\":\"Mofiz Mojib Haider, Md. Farhad Hossin, Hasibur Rashid Mahi, Hossain Arif\",\"doi\":\"10.1109/TENSYMP50017.2020.9230670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significance of text summarization in the Natural Language Processing (NLP) community has now expanded because of the staggering increase in virtual textual materials. Text summary is the process created from one or multiple texts which convey important insight in a little form of the main text. Multiple text summarization technique assists to pick indispensable points of the original texts reducing time and effort require reading the whole document. The question was approached from a different point of view, in a different domain by using different concepts. Extractive and abstractive are the two main methods of summing up text. Though extractive summary is primarily concerned with what summary content the frequency of words, phrases, and sentences from the original document should be used. This research proposes a sentence based clustering algorithm (K-Means) for a single document. For feature extraction, we have used Gensim word2vec which is intended to automatically extract semantic topics from documents in the most efficient way possible.\",\"PeriodicalId\":6721,\"journal\":{\"name\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"6 1\",\"pages\":\"283-286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP50017.2020.9230670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

由于虚拟文本材料的惊人增长,文本摘要在自然语言处理(NLP)领域的重要性已经扩大。文本摘要是由一个或多个文本创建的过程,这些文本以主要文本的小形式传达重要的见解。多重文本摘要技术有助于选择原文中不可或缺的要点,减少阅读全文的时间和精力。这个问题是从不同的角度,在不同的领域,通过使用不同的概念来解决的。摘要和抽象是归纳文本的两种主要方法。虽然摘要主要关注的是摘要内容,但原文档中单词、短语和句子的使用频率应该是多少。本文提出了一种基于句子的单个文档聚类算法(K-Means)。对于特征提取,我们使用了Gensim word2vec,它旨在以最有效的方式从文档中自动提取语义主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Text Summarization Using Gensim Word2Vec and K-Means Clustering Algorithm
The significance of text summarization in the Natural Language Processing (NLP) community has now expanded because of the staggering increase in virtual textual materials. Text summary is the process created from one or multiple texts which convey important insight in a little form of the main text. Multiple text summarization technique assists to pick indispensable points of the original texts reducing time and effort require reading the whole document. The question was approached from a different point of view, in a different domain by using different concepts. Extractive and abstractive are the two main methods of summing up text. Though extractive summary is primarily concerned with what summary content the frequency of words, phrases, and sentences from the original document should be used. This research proposes a sentence based clustering algorithm (K-Means) for a single document. For feature extraction, we have used Gensim word2vec which is intended to automatically extract semantic topics from documents in the most efficient way possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Honorary Chair Multi-connectivity for URLLC: Performance Comparison of Different Architectures Efficiency Evaluation of P&O MPPT Technique used for Maximum Power Extraction from Solar Photovoltaic System Application of Internet of Things (IoT) to Develop a Smart Watering System for Cairns Parklands – A Case Study Analysis of Stability and Control of Helicopter Flight Dynamics Through Mathematical Modeling in Matlab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1