玉米(Zea mays L.)苗期抗旱基因型的表型和分子证实

Abdul Rehman
{"title":"玉米(Zea mays L.)苗期抗旱基因型的表型和分子证实","authors":"Abdul Rehman","doi":"10.19045/bspab.2023.120156","DOIUrl":null,"url":null,"abstract":"Abiotic stresses such as drought is adversely affecting the crop yields as well as maize productivity. The core idea of this study was to screen and identify maize genotypes for drought tolerance through morphological and molecular characterization for Balochistan region. In-vitro experiment was carried out using four maize genotypes namely Azam, Jalal, Edhi and Pahari that were investigated for drought stress tolerance at seedling stage. Completely randomized design (CRD) was used for current study. Maize seedlings were grown in growth chamber and after two-weeks of drought stress, samples were collected at different time periods. The morphological data showed that the root architecture of Jalal was significantly different from the remaining studied genotypes. These results were further strengthened and supported by the molecular analysis. For wet lab experiment, the DNA was extracted by Plant Mini Kit method and the presence/absence of drought tolerant gene was confirmed through the Polymerase Chain Reaction (PCR). The specifically designed primers for candidate orthologues were used to obtain the targeted PCR products. Furthermore, the results of PCR were confirmed through gel electrophoresis. The results of inter simple sequence repeats (ISSR) markers showed that only ISSR-838 was attached on Jalal while remaining genotypes did not showed any amplification of the products, that mean the Jalal genotype is more diverse from the other genotypes for drought stress tolerance. The obtained results of this study will be further utilized for the development of drought resistant maize variety and also used in other future breeding programs of Balochistan.","PeriodicalId":20855,"journal":{"name":"Pure and Applied Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenotypic and molecular confirmation of maize (Zea mays L.) genotypes for drought tolerance at seedling stage\",\"authors\":\"Abdul Rehman\",\"doi\":\"10.19045/bspab.2023.120156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abiotic stresses such as drought is adversely affecting the crop yields as well as maize productivity. The core idea of this study was to screen and identify maize genotypes for drought tolerance through morphological and molecular characterization for Balochistan region. In-vitro experiment was carried out using four maize genotypes namely Azam, Jalal, Edhi and Pahari that were investigated for drought stress tolerance at seedling stage. Completely randomized design (CRD) was used for current study. Maize seedlings were grown in growth chamber and after two-weeks of drought stress, samples were collected at different time periods. The morphological data showed that the root architecture of Jalal was significantly different from the remaining studied genotypes. These results were further strengthened and supported by the molecular analysis. For wet lab experiment, the DNA was extracted by Plant Mini Kit method and the presence/absence of drought tolerant gene was confirmed through the Polymerase Chain Reaction (PCR). The specifically designed primers for candidate orthologues were used to obtain the targeted PCR products. Furthermore, the results of PCR were confirmed through gel electrophoresis. The results of inter simple sequence repeats (ISSR) markers showed that only ISSR-838 was attached on Jalal while remaining genotypes did not showed any amplification of the products, that mean the Jalal genotype is more diverse from the other genotypes for drought stress tolerance. The obtained results of this study will be further utilized for the development of drought resistant maize variety and also used in other future breeding programs of Balochistan.\",\"PeriodicalId\":20855,\"journal\":{\"name\":\"Pure and Applied Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19045/bspab.2023.120156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19045/bspab.2023.120156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

干旱等非生物胁迫对作物产量和玉米生产力产生不利影响。本研究的核心思想是通过形态和分子特征对俾路支省地区玉米抗旱基因型进行筛选和鉴定。以Azam、Jalal、Edhi和Pahari 4个玉米基因型为材料,进行了苗期抗旱性试验。本研究采用完全随机设计(CRD)。玉米幼苗在生长室内生长,经过2周的干旱胁迫后,在不同的时间段采集样品。形态学数据表明,贾拉尔根构型与其他基因型有显著差异。这些结果得到了分子分析的进一步证实和支持。湿法实验采用Plant Mini Kit法提取DNA,通过聚合酶链反应(Polymerase Chain Reaction, PCR)检测是否存在耐旱基因。用专门设计的候选同源物引物获得目标PCR产物。并通过凝胶电泳对PCR结果进行验证。简单重复序列(ISSR)标记结果显示,贾拉尔大豆只有ISSR-838被扩增,其余基因型均未扩增到该基因型,说明贾拉尔大豆的耐旱性比其他基因型更具多样性。该研究结果将进一步用于开发抗旱玉米品种,并用于俾路支省未来的其他育种计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phenotypic and molecular confirmation of maize (Zea mays L.) genotypes for drought tolerance at seedling stage
Abiotic stresses such as drought is adversely affecting the crop yields as well as maize productivity. The core idea of this study was to screen and identify maize genotypes for drought tolerance through morphological and molecular characterization for Balochistan region. In-vitro experiment was carried out using four maize genotypes namely Azam, Jalal, Edhi and Pahari that were investigated for drought stress tolerance at seedling stage. Completely randomized design (CRD) was used for current study. Maize seedlings were grown in growth chamber and after two-weeks of drought stress, samples were collected at different time periods. The morphological data showed that the root architecture of Jalal was significantly different from the remaining studied genotypes. These results were further strengthened and supported by the molecular analysis. For wet lab experiment, the DNA was extracted by Plant Mini Kit method and the presence/absence of drought tolerant gene was confirmed through the Polymerase Chain Reaction (PCR). The specifically designed primers for candidate orthologues were used to obtain the targeted PCR products. Furthermore, the results of PCR were confirmed through gel electrophoresis. The results of inter simple sequence repeats (ISSR) markers showed that only ISSR-838 was attached on Jalal while remaining genotypes did not showed any amplification of the products, that mean the Jalal genotype is more diverse from the other genotypes for drought stress tolerance. The obtained results of this study will be further utilized for the development of drought resistant maize variety and also used in other future breeding programs of Balochistan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing anaerobic digestion through the integration of microbial electrolysis cells: A comprehensive review Ravi river, a potential reservoir for opportunistic pathogens of mucormycosis Influence of asafoetida herbal supplementation on the growth performance and nutrients digestibility in broiler chickens Ochratoxin-A induced pathological changes in broiler chicks First report of Geotrichum candidum causing post-harvest rot of Ber (Ziziphus mauritiana) & Guava (Psidium guajava) from Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1