基于翻转STEM课堂工程的模块设计:模糊德尔菲法

Khadijeh Naser, S.M.S Alamassi, Zuhrieh Shana, Jihan Yousef, S. H. Halili
{"title":"基于翻转STEM课堂工程的模块设计:模糊德尔菲法","authors":"Khadijeh Naser, S.M.S Alamassi, Zuhrieh Shana, Jihan Yousef, S. H. Halili","doi":"10.3991/ijim.v17i10.38217","DOIUrl":null,"url":null,"abstract":"Abstract— The National Innovation System found that research in Jordan did not contribute sufficiently to economic growth and to solving real-world challenges, particularly those related to STEM (science, technology, engineering, and mathematics). This was attributed to several reasons, including the inability of educational curricula to guide students in dealing with real-world issues. In addition, education in Jordan is content-intensive and primary school children lack the time to build functional competencies such as problem-solving. Therefore, it was necessary to adopt an approach allowing students to learn the theoretical content on their own while allocating class time to practice problem-solving activities with their teacher and peers. To address this gap, this study aimed at designing an engineering-based module for a flipped STEM classroom to aid grade seven students in developing their problem-solving abilities based on Merrill’s first principles of instruction as an instructional design model. To generate the module components and aspects, semi-structured interviews were performed with 9 subject matter experts. Then, 29 experts responded and offered a consensus on what was reached in the previous interview. A total of 36 items were discussed by the expert panel using the Likert 7-point scale in the fuzzy Delphi approach. The five-module aspects namely; the form of STEM integration, the assessment, the resources, and the pre-class and in-class instructional activities, were determined. This research will usher in a new era for the Ministry of Education. in planning and teaching integrated STEM disciplines in line with Jordan’s vision 2025 to equip all learners with 21st-century skills such as problem-solving to enhance education standards to international levels.","PeriodicalId":13648,"journal":{"name":"Int. J. Interact. Mob. Technol.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing of a Flipped STEM Classroom Engineering-Based Module: Fuzzy Delphi Approach\",\"authors\":\"Khadijeh Naser, S.M.S Alamassi, Zuhrieh Shana, Jihan Yousef, S. H. Halili\",\"doi\":\"10.3991/ijim.v17i10.38217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract— The National Innovation System found that research in Jordan did not contribute sufficiently to economic growth and to solving real-world challenges, particularly those related to STEM (science, technology, engineering, and mathematics). This was attributed to several reasons, including the inability of educational curricula to guide students in dealing with real-world issues. In addition, education in Jordan is content-intensive and primary school children lack the time to build functional competencies such as problem-solving. Therefore, it was necessary to adopt an approach allowing students to learn the theoretical content on their own while allocating class time to practice problem-solving activities with their teacher and peers. To address this gap, this study aimed at designing an engineering-based module for a flipped STEM classroom to aid grade seven students in developing their problem-solving abilities based on Merrill’s first principles of instruction as an instructional design model. To generate the module components and aspects, semi-structured interviews were performed with 9 subject matter experts. Then, 29 experts responded and offered a consensus on what was reached in the previous interview. A total of 36 items were discussed by the expert panel using the Likert 7-point scale in the fuzzy Delphi approach. The five-module aspects namely; the form of STEM integration, the assessment, the resources, and the pre-class and in-class instructional activities, were determined. This research will usher in a new era for the Ministry of Education. in planning and teaching integrated STEM disciplines in line with Jordan’s vision 2025 to equip all learners with 21st-century skills such as problem-solving to enhance education standards to international levels.\",\"PeriodicalId\":13648,\"journal\":{\"name\":\"Int. J. Interact. Mob. Technol.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Interact. Mob. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijim.v17i10.38217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interact. Mob. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijim.v17i10.38217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:国家创新系统发现,约旦的研究对经济增长和解决现实世界的挑战没有做出足够的贡献,特别是与STEM(科学、技术、工程和数学)相关的挑战。这可归因于几个原因,包括教育课程无法指导学生处理现实问题。此外,约旦的教育是内容密集型的,小学生缺乏时间来培养解决问题等功能能力。因此,有必要采取一种方法,让学生自己学习理论内容,同时分配课堂时间,与老师和同学一起练习解决问题的活动。为了解决这一差距,本研究旨在为翻转STEM课堂设计一个基于工程的模块,以帮助七年级学生发展他们解决问题的能力,该模块基于Merrill的教学第一原则作为教学设计模型。为了生成模块组件和方面,对9位主题专家进行了半结构化访谈。然后,29位专家回应,并就之前的访谈达成共识。专家小组使用模糊德尔菲法中的李克特7点量表讨论了总共36个项目。五个模块方面即;确定了STEM整合的形式、评估、资源以及课前和课内教学活动。这项研究将为教育部开创一个新时代。按照约旦2025年愿景规划和教学综合STEM学科,使所有学习者具备21世纪的技能,如解决问题的能力,将教育水平提高到国际水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing of a Flipped STEM Classroom Engineering-Based Module: Fuzzy Delphi Approach
Abstract— The National Innovation System found that research in Jordan did not contribute sufficiently to economic growth and to solving real-world challenges, particularly those related to STEM (science, technology, engineering, and mathematics). This was attributed to several reasons, including the inability of educational curricula to guide students in dealing with real-world issues. In addition, education in Jordan is content-intensive and primary school children lack the time to build functional competencies such as problem-solving. Therefore, it was necessary to adopt an approach allowing students to learn the theoretical content on their own while allocating class time to practice problem-solving activities with their teacher and peers. To address this gap, this study aimed at designing an engineering-based module for a flipped STEM classroom to aid grade seven students in developing their problem-solving abilities based on Merrill’s first principles of instruction as an instructional design model. To generate the module components and aspects, semi-structured interviews were performed with 9 subject matter experts. Then, 29 experts responded and offered a consensus on what was reached in the previous interview. A total of 36 items were discussed by the expert panel using the Likert 7-point scale in the fuzzy Delphi approach. The five-module aspects namely; the form of STEM integration, the assessment, the resources, and the pre-class and in-class instructional activities, were determined. This research will usher in a new era for the Ministry of Education. in planning and teaching integrated STEM disciplines in line with Jordan’s vision 2025 to equip all learners with 21st-century skills such as problem-solving to enhance education standards to international levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ESPE Security: Mobile and Web Application to Manage Community Emergency Alerts Improving Chemical Literacy Skills: Integrated Socio-Scientific Issues Content in Augmented Reality Mobile Alternative Framework in Electrochemistry among Secondary Schools Students in Johor, Malaysia Empowering Safety-Conscious Women Travelers: Examining the Benefits of Electronic Word of Mouth and Mobile Travel Assistant Enhancing Metacognitive and Creativity Skills through AI-Driven Meta-Learning Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1