{"title":"非线性矢量多分辨率分析","authors":"M. Gupta, A. Gilbert","doi":"10.1109/ACSSC.2000.910681","DOIUrl":null,"url":null,"abstract":"We explore the use of multiresolution analysis for vector signals, such as multispectral images or stock market portfolio time series. These signals often contain local correlations among components that are overlooked in a component-by-component analysis. We show that a coarse signal defined by taking local arithmetic averages is equivalent to analyzing the signal component by component, but by using the average that minimizes the L/sup 2/ distance to the local points results in a non-separable vector multiresolution analysis. We propose using the vector multiresolution representation for signal processing tasks such as compression and denoising. We prove some results in denoising and present color image examples.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"23 1","pages":"1077-1081 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear vector multiresolution analysis\",\"authors\":\"M. Gupta, A. Gilbert\",\"doi\":\"10.1109/ACSSC.2000.910681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the use of multiresolution analysis for vector signals, such as multispectral images or stock market portfolio time series. These signals often contain local correlations among components that are overlooked in a component-by-component analysis. We show that a coarse signal defined by taking local arithmetic averages is equivalent to analyzing the signal component by component, but by using the average that minimizes the L/sup 2/ distance to the local points results in a non-separable vector multiresolution analysis. We propose using the vector multiresolution representation for signal processing tasks such as compression and denoising. We prove some results in denoising and present color image examples.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"23 1\",\"pages\":\"1077-1081 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.910681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们探索使用多分辨率分析矢量信号,如多光谱图像或股票市场投资组合时间序列。这些信号通常包含组件之间的局部相关性,而这些相关性在逐个组件的分析中被忽略了。我们表明,通过采用局部算术平均值定义的粗信号相当于逐个分量分析信号,但通过使用最小化到局部点的L/sup /距离的平均值,可以得到不可分向量多分辨率分析。我们建议将向量多分辨率表示用于信号处理任务,如压缩和去噪。我们证明了一些去噪的结果,并给出了彩色图像的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear vector multiresolution analysis
We explore the use of multiresolution analysis for vector signals, such as multispectral images or stock market portfolio time series. These signals often contain local correlations among components that are overlooked in a component-by-component analysis. We show that a coarse signal defined by taking local arithmetic averages is equivalent to analyzing the signal component by component, but by using the average that minimizes the L/sup 2/ distance to the local points results in a non-separable vector multiresolution analysis. We propose using the vector multiresolution representation for signal processing tasks such as compression and denoising. We prove some results in denoising and present color image examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized lapped biorthogonal transforms using lifting steps Linear unitary precoders for maximum diversity gains with multiple transmit and receive antennas An N2logN back-projection algorithm for SAR image formation A fast constant modulus algorithm for blind equalization A signal separation algorithm for fetal heart-rate estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1