卟啉甲酯与铜相互作用的热力学性质和电子转移:结合力的性质

S. Al-Omari
{"title":"卟啉甲酯与铜相互作用的热力学性质和电子转移:结合力的性质","authors":"S. Al-Omari","doi":"10.15866/IREBIC.V4I4.1652","DOIUrl":null,"url":null,"abstract":"Pyropheophorbide methyl ester (PPME) is clinically used as antitumor drug. Understanding of the strong interaction between PPME and Cu2+ could contribute to understand its pharmacodynamics and pharmacokinetics. The interaction between PPME and Cu2+ was investigated using fluorescence and UV-vis techniques. The binding constants of Cu2+ with PPME were determined at different temperatures depending on the fluorescence quenching results. Furthermore, the thermodynamic functions of standard enthalpy (ΔH0) and standard entropy (ΔS0) for the binding reaction were determined according to the van’t Hoff equation, which indicated that electron transfer, electrostatic, and hydrophobic interactions are important driving forces for PPME-Cu2+ association","PeriodicalId":14377,"journal":{"name":"International Review of Biophysical Chemistry","volume":"82 1","pages":"143-151"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Properties and Electron Transfer of the Interaction Between Pyropheophorbide a Methyl Ester and Copper: the Nature of Binding Forces\",\"authors\":\"S. Al-Omari\",\"doi\":\"10.15866/IREBIC.V4I4.1652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pyropheophorbide methyl ester (PPME) is clinically used as antitumor drug. Understanding of the strong interaction between PPME and Cu2+ could contribute to understand its pharmacodynamics and pharmacokinetics. The interaction between PPME and Cu2+ was investigated using fluorescence and UV-vis techniques. The binding constants of Cu2+ with PPME were determined at different temperatures depending on the fluorescence quenching results. Furthermore, the thermodynamic functions of standard enthalpy (ΔH0) and standard entropy (ΔS0) for the binding reaction were determined according to the van’t Hoff equation, which indicated that electron transfer, electrostatic, and hydrophobic interactions are important driving forces for PPME-Cu2+ association\",\"PeriodicalId\":14377,\"journal\":{\"name\":\"International Review of Biophysical Chemistry\",\"volume\":\"82 1\",\"pages\":\"143-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Biophysical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREBIC.V4I4.1652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Biophysical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREBIC.V4I4.1652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

焦磷酯甲酯(PPME)是临床上常用的抗肿瘤药物。了解PPME与Cu2+之间的强相互作用有助于了解其药效学和药代动力学。利用荧光和紫外-可见技术研究了PPME与Cu2+的相互作用。根据荧光猝灭结果测定了不同温度下Cu2+与PPME的结合常数。此外,根据van 't Hoff方程确定了结合反应的标准焓(ΔH0)和标准熵(ΔS0)热力学函数,表明电子转移、静电和疏水相互作用是PPME-Cu2+缔合的重要驱动力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic Properties and Electron Transfer of the Interaction Between Pyropheophorbide a Methyl Ester and Copper: the Nature of Binding Forces
Pyropheophorbide methyl ester (PPME) is clinically used as antitumor drug. Understanding of the strong interaction between PPME and Cu2+ could contribute to understand its pharmacodynamics and pharmacokinetics. The interaction between PPME and Cu2+ was investigated using fluorescence and UV-vis techniques. The binding constants of Cu2+ with PPME were determined at different temperatures depending on the fluorescence quenching results. Furthermore, the thermodynamic functions of standard enthalpy (ΔH0) and standard entropy (ΔS0) for the binding reaction were determined according to the van’t Hoff equation, which indicated that electron transfer, electrostatic, and hydrophobic interactions are important driving forces for PPME-Cu2+ association
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biocoagulants for Water and Waste Water Purification: a Review Optimisation of Poly(γ-Glutamic Acid) Production by Bacillus velezensis NRRL B – 23189 in Liquid Fermentation with Molasses as the Carbon Source without Addition of Glutamic Acid Effects of Transesterification Parameters on the Biodiesel Produced from Crude Groundnut Oil Effect of Filling Kinetic of Sequencing Batch Reactor on the Poultry Wastewater Treatment Technology and Engineering of Biodiesel Production: a Comparative Study between Microalgae and Other Non-Photosynthetic Oleaginous Microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1