Ling Lv, Haikuo Zhang, Di Lu, Yuan Yu, Jiacheng Qi, Junbo Zhang, Shuoqing Zhang, Ruhong Li, T. Deng, Lixin Chen, Xiulin Fan
{"title":"低浓度的砜电解质可以实现锂离子电池的高压化学反应","authors":"Ling Lv, Haikuo Zhang, Di Lu, Yuan Yu, Jiacheng Qi, Junbo Zhang, Shuoqing Zhang, Ruhong Li, T. Deng, Lixin Chen, Xiulin Fan","doi":"10.20517/energymater.2022.38","DOIUrl":null,"url":null,"abstract":"Commercial carbonate electrolytes with poor oxidation stability and high flammability limit the operating voltage of Li-ion batteries (LIBs) to ~4.3 V. As one of the most promising candidates for electrolyte solvents, sulfolane (SL) has received significant interest because of its wide electrochemical window, low flammability and high dielectric permittivity. Unfortunately, SL-based electrolytes with normal concentrations cannot achieve highly reversible Li+ intercalation/deintercalation in graphite anodes due to an ineffective solid electrolyte interface, thus undermining their potential application in LIBs. Here, a low-concentration SL-based electrolyte (LSLE) is developed for high-voltage graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) full cells. A highly reversible graphite anode can be achieved through the preferential decomposition of the dual-salt LiDFOB-LiBF4 in the LSLE. The addition of fluorobenzene further restrains the decomposition of SL, endowing uniform, robust and inorganic-rich interphases on the electrode surfaces. As a result, the LSLE with improved thermal stability can support the MCMB||NCM811 full cells at 4.4 V, evidenced by an excellent cycling performance with capacity retentions of 83% after 500 cycles at 25 ℃ and 82% after 400 cycles at 60 ℃. We believe that the design of this fluorobenzene-containing LSLE offers an effective routine for next-generation low-cost and safe electrolytes for high-voltage LIBs.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A low-concentration sulfone electrolyte enables high-voltage chemistry of lithium-ion batteries\",\"authors\":\"Ling Lv, Haikuo Zhang, Di Lu, Yuan Yu, Jiacheng Qi, Junbo Zhang, Shuoqing Zhang, Ruhong Li, T. Deng, Lixin Chen, Xiulin Fan\",\"doi\":\"10.20517/energymater.2022.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial carbonate electrolytes with poor oxidation stability and high flammability limit the operating voltage of Li-ion batteries (LIBs) to ~4.3 V. As one of the most promising candidates for electrolyte solvents, sulfolane (SL) has received significant interest because of its wide electrochemical window, low flammability and high dielectric permittivity. Unfortunately, SL-based electrolytes with normal concentrations cannot achieve highly reversible Li+ intercalation/deintercalation in graphite anodes due to an ineffective solid electrolyte interface, thus undermining their potential application in LIBs. Here, a low-concentration SL-based electrolyte (LSLE) is developed for high-voltage graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) full cells. A highly reversible graphite anode can be achieved through the preferential decomposition of the dual-salt LiDFOB-LiBF4 in the LSLE. The addition of fluorobenzene further restrains the decomposition of SL, endowing uniform, robust and inorganic-rich interphases on the electrode surfaces. As a result, the LSLE with improved thermal stability can support the MCMB||NCM811 full cells at 4.4 V, evidenced by an excellent cycling performance with capacity retentions of 83% after 500 cycles at 25 ℃ and 82% after 400 cycles at 60 ℃. We believe that the design of this fluorobenzene-containing LSLE offers an effective routine for next-generation low-cost and safe electrolytes for high-voltage LIBs.\",\"PeriodicalId\":21863,\"journal\":{\"name\":\"Solar Energy Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2022.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2022.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-concentration sulfone electrolyte enables high-voltage chemistry of lithium-ion batteries
Commercial carbonate electrolytes with poor oxidation stability and high flammability limit the operating voltage of Li-ion batteries (LIBs) to ~4.3 V. As one of the most promising candidates for electrolyte solvents, sulfolane (SL) has received significant interest because of its wide electrochemical window, low flammability and high dielectric permittivity. Unfortunately, SL-based electrolytes with normal concentrations cannot achieve highly reversible Li+ intercalation/deintercalation in graphite anodes due to an ineffective solid electrolyte interface, thus undermining their potential application in LIBs. Here, a low-concentration SL-based electrolyte (LSLE) is developed for high-voltage graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) full cells. A highly reversible graphite anode can be achieved through the preferential decomposition of the dual-salt LiDFOB-LiBF4 in the LSLE. The addition of fluorobenzene further restrains the decomposition of SL, endowing uniform, robust and inorganic-rich interphases on the electrode surfaces. As a result, the LSLE with improved thermal stability can support the MCMB||NCM811 full cells at 4.4 V, evidenced by an excellent cycling performance with capacity retentions of 83% after 500 cycles at 25 ℃ and 82% after 400 cycles at 60 ℃. We believe that the design of this fluorobenzene-containing LSLE offers an effective routine for next-generation low-cost and safe electrolytes for high-voltage LIBs.