Roberto C Vázquez Fletes, Erick O Cisneros López, Pedro Ortega Gudiño, E. Mendizábal, Rubén González Núñez, D. Rodrigue
{"title":"碾磨轮胎橡胶/聚酰胺6热塑性弹性体生产的干共混和压缩成型","authors":"Roberto C Vázquez Fletes, Erick O Cisneros López, Pedro Ortega Gudiño, E. Mendizábal, Rubén González Núñez, D. Rodrigue","doi":"10.1177/14777606211038956","DOIUrl":null,"url":null,"abstract":"This study investigates the addition of ground tire rubber (GTR) into virgin polyamide 6 (PA6) to produce thermoplastic elastomer (TPE) blends. In particular, a wide range of GTR concentration (0–100% wt.) was possible by using a simple dry blending technique of the materials in a powder form followed by compression molding. The molded samples were characterized in terms of morphological (scanning electron microscopy), physical (density and hardness) and mechanical (tension, flexion and impact) properties. The results showed a decrease in tensile and flexural moduli and strengths with GTR due to its elastomeric nature. However, significant increases were observed on the tensile elongation at break (up to 167%) and impact strength (up to 131%) compared to the neat PA6 matrix. Based on the results obtained, an optimum GTR content around 75% wt. was observed which represents a balance between high recycled rubber content and a sufficient amount of matrix to recover all the particles. These results represent a first step showing that a simple processing method can be used to produce low cost PA6/GTR compounds with a wide range of physical and mechanical properties.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"10 1","pages":"38 - 55"},"PeriodicalIF":1.1000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ground tire rubber/polyamide 6 thermoplastic elastomers produced by dry blending and compression molding\",\"authors\":\"Roberto C Vázquez Fletes, Erick O Cisneros López, Pedro Ortega Gudiño, E. Mendizábal, Rubén González Núñez, D. Rodrigue\",\"doi\":\"10.1177/14777606211038956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the addition of ground tire rubber (GTR) into virgin polyamide 6 (PA6) to produce thermoplastic elastomer (TPE) blends. In particular, a wide range of GTR concentration (0–100% wt.) was possible by using a simple dry blending technique of the materials in a powder form followed by compression molding. The molded samples were characterized in terms of morphological (scanning electron microscopy), physical (density and hardness) and mechanical (tension, flexion and impact) properties. The results showed a decrease in tensile and flexural moduli and strengths with GTR due to its elastomeric nature. However, significant increases were observed on the tensile elongation at break (up to 167%) and impact strength (up to 131%) compared to the neat PA6 matrix. Based on the results obtained, an optimum GTR content around 75% wt. was observed which represents a balance between high recycled rubber content and a sufficient amount of matrix to recover all the particles. These results represent a first step showing that a simple processing method can be used to produce low cost PA6/GTR compounds with a wide range of physical and mechanical properties.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"10 1\",\"pages\":\"38 - 55\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606211038956\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606211038956","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Ground tire rubber/polyamide 6 thermoplastic elastomers produced by dry blending and compression molding
This study investigates the addition of ground tire rubber (GTR) into virgin polyamide 6 (PA6) to produce thermoplastic elastomer (TPE) blends. In particular, a wide range of GTR concentration (0–100% wt.) was possible by using a simple dry blending technique of the materials in a powder form followed by compression molding. The molded samples were characterized in terms of morphological (scanning electron microscopy), physical (density and hardness) and mechanical (tension, flexion and impact) properties. The results showed a decrease in tensile and flexural moduli and strengths with GTR due to its elastomeric nature. However, significant increases were observed on the tensile elongation at break (up to 167%) and impact strength (up to 131%) compared to the neat PA6 matrix. Based on the results obtained, an optimum GTR content around 75% wt. was observed which represents a balance between high recycled rubber content and a sufficient amount of matrix to recover all the particles. These results represent a first step showing that a simple processing method can be used to produce low cost PA6/GTR compounds with a wide range of physical and mechanical properties.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.