{"title":"多感官体验与模糊三级网络DEA模型相结合的包装材料选择方法","authors":"Yong Xie, Nanning Chen, G. Hua, Y. Xiao","doi":"10.1002/pts.2698","DOIUrl":null,"url":null,"abstract":"Materials selection involves thousands of material types and evaluation parameters. Considering multisensory experience for packaging materials selection is an important trend but a difficult duty that involves uncertainty due to the subjectivity of humans. The main aim of this study is to establish a model to determine the consumer sensory experience of packaging materials as a function supporting packaging material selection development. When the consumer interacts before and after opening the packaging, vision and tactility are the foremost sensory feedback types, which are difficult to measure for fuzziness and uncertainty. Thus, given the consumer senses of vision and tactility, this paper addresses the relationship between sensory experience and packaging material properties. This is creatively formulated in three stages from the physical properties and the psycho‐physical to the affective levels. The proposed approach that combines fuzzy theory and three‐stage network data envelopment analysis (DEA) is used to rank 12 toning lotion bottle packaging materials. It is validated that this model allows a clear decision‐making basis for material selection in packaging design, and physiological signal tests provided key data to support material selection. Moreover, it realized the function of predicting physiological signal according to material properties by backpropagation neural network (BPNN).","PeriodicalId":19626,"journal":{"name":"Packaging Technology and Science","volume":"23 1","pages":"125 - 134"},"PeriodicalIF":2.8000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodology selecting packaging materials combined multi‐sensory experience and fuzzy three‐stage network DEA model\",\"authors\":\"Yong Xie, Nanning Chen, G. Hua, Y. Xiao\",\"doi\":\"10.1002/pts.2698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Materials selection involves thousands of material types and evaluation parameters. Considering multisensory experience for packaging materials selection is an important trend but a difficult duty that involves uncertainty due to the subjectivity of humans. The main aim of this study is to establish a model to determine the consumer sensory experience of packaging materials as a function supporting packaging material selection development. When the consumer interacts before and after opening the packaging, vision and tactility are the foremost sensory feedback types, which are difficult to measure for fuzziness and uncertainty. Thus, given the consumer senses of vision and tactility, this paper addresses the relationship between sensory experience and packaging material properties. This is creatively formulated in three stages from the physical properties and the psycho‐physical to the affective levels. The proposed approach that combines fuzzy theory and three‐stage network data envelopment analysis (DEA) is used to rank 12 toning lotion bottle packaging materials. It is validated that this model allows a clear decision‐making basis for material selection in packaging design, and physiological signal tests provided key data to support material selection. Moreover, it realized the function of predicting physiological signal according to material properties by backpropagation neural network (BPNN).\",\"PeriodicalId\":19626,\"journal\":{\"name\":\"Packaging Technology and Science\",\"volume\":\"23 1\",\"pages\":\"125 - 134\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging Technology and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pts.2698\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pts.2698","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Methodology selecting packaging materials combined multi‐sensory experience and fuzzy three‐stage network DEA model
Materials selection involves thousands of material types and evaluation parameters. Considering multisensory experience for packaging materials selection is an important trend but a difficult duty that involves uncertainty due to the subjectivity of humans. The main aim of this study is to establish a model to determine the consumer sensory experience of packaging materials as a function supporting packaging material selection development. When the consumer interacts before and after opening the packaging, vision and tactility are the foremost sensory feedback types, which are difficult to measure for fuzziness and uncertainty. Thus, given the consumer senses of vision and tactility, this paper addresses the relationship between sensory experience and packaging material properties. This is creatively formulated in three stages from the physical properties and the psycho‐physical to the affective levels. The proposed approach that combines fuzzy theory and three‐stage network data envelopment analysis (DEA) is used to rank 12 toning lotion bottle packaging materials. It is validated that this model allows a clear decision‐making basis for material selection in packaging design, and physiological signal tests provided key data to support material selection. Moreover, it realized the function of predicting physiological signal according to material properties by backpropagation neural network (BPNN).
期刊介绍:
Packaging Technology & Science publishes original research, applications and review papers describing significant, novel developments in its field.
The Journal welcomes contributions in a wide range of areas in packaging technology and science, including:
-Active packaging
-Aseptic and sterile packaging
-Barrier packaging
-Design methodology
-Environmental factors and sustainability
-Ergonomics
-Food packaging
-Machinery and engineering for packaging
-Marketing aspects of packaging
-Materials
-Migration
-New manufacturing processes and techniques
-Testing, analysis and quality control
-Transport packaging