{"title":"我们呼吸同样的空气吗?","authors":"Rishiraj Adhikary, Nipun Batra","doi":"10.1145/3410530.3414414","DOIUrl":null,"url":null,"abstract":"91% of the world's population lives in areas where air pollution exceeds safety limits1. Research has focused on monitoring ambient air pollution, but individual exposure to air pollution is not equal to ambient and is thus important to measure. Our work (in progress) measures individual exposures of different categories of people on an academic campus. We highlight some anecdotal findings and surprising insights from monitoring, such as a) Indoor CO2 concentration of 1.8 times higher than the permissible limit. Over 10 times the WHO limit of PM2.5 exposure during b) construction-related activities, and c) cooking (despite the use of exhaust). We also found that during transit, the PM2.5 exposure is at least two times higher than indoor. Our current work though in progress, already shows important findings affecting different people associated with an academic campus. In the future, we plan to do a more exhaustive study and reduce the form factor and energy needs for our sensors to scale the study.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Do we breathe the same air?\",\"authors\":\"Rishiraj Adhikary, Nipun Batra\",\"doi\":\"10.1145/3410530.3414414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"91% of the world's population lives in areas where air pollution exceeds safety limits1. Research has focused on monitoring ambient air pollution, but individual exposure to air pollution is not equal to ambient and is thus important to measure. Our work (in progress) measures individual exposures of different categories of people on an academic campus. We highlight some anecdotal findings and surprising insights from monitoring, such as a) Indoor CO2 concentration of 1.8 times higher than the permissible limit. Over 10 times the WHO limit of PM2.5 exposure during b) construction-related activities, and c) cooking (despite the use of exhaust). We also found that during transit, the PM2.5 exposure is at least two times higher than indoor. Our current work though in progress, already shows important findings affecting different people associated with an academic campus. In the future, we plan to do a more exhaustive study and reduce the form factor and energy needs for our sensors to scale the study.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
91% of the world's population lives in areas where air pollution exceeds safety limits1. Research has focused on monitoring ambient air pollution, but individual exposure to air pollution is not equal to ambient and is thus important to measure. Our work (in progress) measures individual exposures of different categories of people on an academic campus. We highlight some anecdotal findings and surprising insights from monitoring, such as a) Indoor CO2 concentration of 1.8 times higher than the permissible limit. Over 10 times the WHO limit of PM2.5 exposure during b) construction-related activities, and c) cooking (despite the use of exhaust). We also found that during transit, the PM2.5 exposure is at least two times higher than indoor. Our current work though in progress, already shows important findings affecting different people associated with an academic campus. In the future, we plan to do a more exhaustive study and reduce the form factor and energy needs for our sensors to scale the study.