R. Rana, J. Klopf, C. Ciano, Abhishek Singh, S. Winnerl, H. Schneider, M. Helm, A. Pashkin
{"title":"用于自由电子激光器空腔倾倒的改进锗光开关","authors":"R. Rana, J. Klopf, C. Ciano, Abhishek Singh, S. Winnerl, H. Schneider, M. Helm, A. Pashkin","doi":"10.1109/IRMMW-THz50926.2021.9567541","DOIUrl":null,"url":null,"abstract":"We demonstrate an optical switch based on gold implanted germanium (Ge:Au) suitable for cavity dumping of a free-electron laser (FEL). We achieve a switching contrast of more than 50 % in a broad range of FEL wavelengths from 6 to 90 µm. A linear relationship between the switching fluence and the frequency of the FEL optical field supported by our simulation highlights the role of a photoinduced finite sub-µm thickness of the reflecting plasma layer. The plasma switch exhibits negligible absorption of the FEL radiation in the ʻoffʼ state and requires only a moderate thermoelectric cooling at incident FEL power of several Watts.","PeriodicalId":6852,"journal":{"name":"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)","volume":"16 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Germanium photoswitch for cavity dumping of a free-electron laser\",\"authors\":\"R. Rana, J. Klopf, C. Ciano, Abhishek Singh, S. Winnerl, H. Schneider, M. Helm, A. Pashkin\",\"doi\":\"10.1109/IRMMW-THz50926.2021.9567541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate an optical switch based on gold implanted germanium (Ge:Au) suitable for cavity dumping of a free-electron laser (FEL). We achieve a switching contrast of more than 50 % in a broad range of FEL wavelengths from 6 to 90 µm. A linear relationship between the switching fluence and the frequency of the FEL optical field supported by our simulation highlights the role of a photoinduced finite sub-µm thickness of the reflecting plasma layer. The plasma switch exhibits negligible absorption of the FEL radiation in the ʻoffʼ state and requires only a moderate thermoelectric cooling at incident FEL power of several Watts.\",\"PeriodicalId\":6852,\"journal\":{\"name\":\"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)\",\"volume\":\"16 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THz50926.2021.9567541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz50926.2021.9567541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Germanium photoswitch for cavity dumping of a free-electron laser
We demonstrate an optical switch based on gold implanted germanium (Ge:Au) suitable for cavity dumping of a free-electron laser (FEL). We achieve a switching contrast of more than 50 % in a broad range of FEL wavelengths from 6 to 90 µm. A linear relationship between the switching fluence and the frequency of the FEL optical field supported by our simulation highlights the role of a photoinduced finite sub-µm thickness of the reflecting plasma layer. The plasma switch exhibits negligible absorption of the FEL radiation in the ʻoffʼ state and requires only a moderate thermoelectric cooling at incident FEL power of several Watts.