极值的函数时间序列预测

H. Shang, Ruofan Xu
{"title":"极值的函数时间序列预测","authors":"H. Shang, Ruofan Xu","doi":"10.1080/23737484.2020.1869629","DOIUrl":null,"url":null,"abstract":"Abstract We consider forecasting functional time series of extreme values within a generalized extreme value distribution (GEV). The GEV distribution can be characterized using the three parameters (location, scale, and shape). As a result, the forecasts of the GEV density can be accomplished by forecasting these three latent parameters. Depending on the underlying data structure, some of the three parameters can either be modeled as scalars or functions. We provide two forecasting algorithms to model and forecast these parameters. To assess the forecast uncertainty, we apply a sieve bootstrap method to construct pointwise and simultaneous prediction intervals of the forecasted extreme values. Illustrated by a daily maximum temperature dataset, we demonstrate the advantages of modeling these parameters as functions. Further, the finite-sample performance of our methods is quantified using several Monte Carlo simulated data under a range of scenarios.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"154 1","pages":"182 - 199"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Functional time series forecasting of extreme values\",\"authors\":\"H. Shang, Ruofan Xu\",\"doi\":\"10.1080/23737484.2020.1869629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider forecasting functional time series of extreme values within a generalized extreme value distribution (GEV). The GEV distribution can be characterized using the three parameters (location, scale, and shape). As a result, the forecasts of the GEV density can be accomplished by forecasting these three latent parameters. Depending on the underlying data structure, some of the three parameters can either be modeled as scalars or functions. We provide two forecasting algorithms to model and forecast these parameters. To assess the forecast uncertainty, we apply a sieve bootstrap method to construct pointwise and simultaneous prediction intervals of the forecasted extreme values. Illustrated by a daily maximum temperature dataset, we demonstrate the advantages of modeling these parameters as functions. Further, the finite-sample performance of our methods is quantified using several Monte Carlo simulated data under a range of scenarios.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"154 1\",\"pages\":\"182 - 199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2020.1869629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2020.1869629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

摘要研究广义极值分布(GEV)中极值函数时间序列的预测问题。GEV分布可以通过三个参数(位置、尺度和形状)来表征。因此,通过对这三个潜在参数的预测,可以实现对GEV密度的预测。根据底层数据结构的不同,这三个参数中的一些可以被建模为标量或函数。我们提供了两种预测算法来建模和预测这些参数。为了评估预测的不确定性,我们采用筛子自举法构造预测极值的逐点同步预测区间。以日最高温度数据集为例,我们展示了将这些参数作为函数建模的优点。此外,我们的方法的有限样本性能在一系列场景下使用几个蒙特卡罗模拟数据进行量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional time series forecasting of extreme values
Abstract We consider forecasting functional time series of extreme values within a generalized extreme value distribution (GEV). The GEV distribution can be characterized using the three parameters (location, scale, and shape). As a result, the forecasts of the GEV density can be accomplished by forecasting these three latent parameters. Depending on the underlying data structure, some of the three parameters can either be modeled as scalars or functions. We provide two forecasting algorithms to model and forecast these parameters. To assess the forecast uncertainty, we apply a sieve bootstrap method to construct pointwise and simultaneous prediction intervals of the forecasted extreme values. Illustrated by a daily maximum temperature dataset, we demonstrate the advantages of modeling these parameters as functions. Further, the finite-sample performance of our methods is quantified using several Monte Carlo simulated data under a range of scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1