{"title":"CoViD-19在英国传播和缓解的整体模型:传播率的确定","authors":"N. Hritonenko, Caroline Satsky, Y. Yatsenko","doi":"10.3846/mma.2022.15708","DOIUrl":null,"url":null,"abstract":"The integral model with finite memory is employed to analyze the timeline of COVID-19 epidemic in the United Kingdom and government actions to mitigate it. The model uses a realistic infection distribution. The time-varying transmission rate is determined from Volterra integral equation of the first kind. The authors construct and justify an efficient regularization algorithm for finding the transmission rate. The model and algorithm are approbated on the UK data with several waves of COVID-19 and demonstrate a remarkable resemblance between real and simulated dynamics. The timing of government preventive measures and their impact on the epidemic dynamics are discussed.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"186 1","pages":"573-589"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integral Model of CoViD-19 spread and Mitigation in UK: identification of Transmission rate\",\"authors\":\"N. Hritonenko, Caroline Satsky, Y. Yatsenko\",\"doi\":\"10.3846/mma.2022.15708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integral model with finite memory is employed to analyze the timeline of COVID-19 epidemic in the United Kingdom and government actions to mitigate it. The model uses a realistic infection distribution. The time-varying transmission rate is determined from Volterra integral equation of the first kind. The authors construct and justify an efficient regularization algorithm for finding the transmission rate. The model and algorithm are approbated on the UK data with several waves of COVID-19 and demonstrate a remarkable resemblance between real and simulated dynamics. The timing of government preventive measures and their impact on the epidemic dynamics are discussed.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"186 1\",\"pages\":\"573-589\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2022.15708\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2022.15708","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Integral Model of CoViD-19 spread and Mitigation in UK: identification of Transmission rate
The integral model with finite memory is employed to analyze the timeline of COVID-19 epidemic in the United Kingdom and government actions to mitigate it. The model uses a realistic infection distribution. The time-varying transmission rate is determined from Volterra integral equation of the first kind. The authors construct and justify an efficient regularization algorithm for finding the transmission rate. The model and algorithm are approbated on the UK data with several waves of COVID-19 and demonstrate a remarkable resemblance between real and simulated dynamics. The timing of government preventive measures and their impact on the epidemic dynamics are discussed.