基于人工智能的风力发电系统双馈感应发电机转子电流控制

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2023-05-06 DOI:10.1177/0309524X231173087
M. Tuka, Niguse Assefa Abebe, Fetlework Kedir Abdu
{"title":"基于人工智能的风力发电系统双馈感应发电机转子电流控制","authors":"M. Tuka, Niguse Assefa Abebe, Fetlework Kedir Abdu","doi":"10.1177/0309524X231173087","DOIUrl":null,"url":null,"abstract":"The demand for energy is increasing that can be met with Doubly Fed Induction Generator (DFIG) based Wind Energy Conversion System (WECS). In this paper, A 2 MW DFIG was used as the plant. To limit the shortcomings of a Proportional-Integral (PI) controller, Fuzzy Logic (FL), Fuzzy-PI, and Artificial Neuro-Fuzzy Inference System (ANFIS) controllers are being designed. The system is modeled in a MATLAB/Simulink. A comparative analysis of PI, Fuzzy, Fuzzy-PI, and ANFIS are presented. Taking a steady state error (SSE) as an objective function of performance index, the PI controller results with a 2.9084 A, Fuzzy with 0.8668 A, Fuzzy-PI with 7.654 A, and ANFIS, with 11.5472 A. Hence, the Fuzzy logic controller-based system is found to be the best candidate for SSE control of rotor current. An ANFIS-based controller has the best settling time for rotor currents control, whereas the Fuzzy-PI found to be best for SSE and torque control.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"12 1","pages":"995 - 1015"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based controller for rotor current of doubly fed induction generator in wind turbine system\",\"authors\":\"M. Tuka, Niguse Assefa Abebe, Fetlework Kedir Abdu\",\"doi\":\"10.1177/0309524X231173087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for energy is increasing that can be met with Doubly Fed Induction Generator (DFIG) based Wind Energy Conversion System (WECS). In this paper, A 2 MW DFIG was used as the plant. To limit the shortcomings of a Proportional-Integral (PI) controller, Fuzzy Logic (FL), Fuzzy-PI, and Artificial Neuro-Fuzzy Inference System (ANFIS) controllers are being designed. The system is modeled in a MATLAB/Simulink. A comparative analysis of PI, Fuzzy, Fuzzy-PI, and ANFIS are presented. Taking a steady state error (SSE) as an objective function of performance index, the PI controller results with a 2.9084 A, Fuzzy with 0.8668 A, Fuzzy-PI with 7.654 A, and ANFIS, with 11.5472 A. Hence, the Fuzzy logic controller-based system is found to be the best candidate for SSE control of rotor current. An ANFIS-based controller has the best settling time for rotor currents control, whereas the Fuzzy-PI found to be best for SSE and torque control.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"12 1\",\"pages\":\"995 - 1015\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X231173087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X231173087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

基于双馈感应发电机(DFIG)的风能转换系统(WECS)可以满足日益增长的能源需求。本文采用a2mw双馈发电机组作为电厂。为了限制比例积分(PI)控制器的缺点,模糊逻辑(FL)、模糊PI和人工神经模糊推理系统(ANFIS)控制器被设计出来。在MATLAB/Simulink中对系统进行了建模。对PI、Fuzzy、Fuzzy-PI和ANFIS进行了比较分析。以稳态误差(SSE)作为性能指标的目标函数,PI控制器的输出功率为2.9084 a,模糊输出功率为0.8668 a, Fuzzy-PI输出功率为7.654 a, ANFIS输出功率为11.5472 a。因此,基于模糊逻辑控制器的系统是转子电流SSE控制的最佳候选。基于anfi的控制器对转子电流控制具有最佳的稳定时间,而基于Fuzzy-PI的控制器对SSE和转矩控制具有最佳的稳定时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence-based controller for rotor current of doubly fed induction generator in wind turbine system
The demand for energy is increasing that can be met with Doubly Fed Induction Generator (DFIG) based Wind Energy Conversion System (WECS). In this paper, A 2 MW DFIG was used as the plant. To limit the shortcomings of a Proportional-Integral (PI) controller, Fuzzy Logic (FL), Fuzzy-PI, and Artificial Neuro-Fuzzy Inference System (ANFIS) controllers are being designed. The system is modeled in a MATLAB/Simulink. A comparative analysis of PI, Fuzzy, Fuzzy-PI, and ANFIS are presented. Taking a steady state error (SSE) as an objective function of performance index, the PI controller results with a 2.9084 A, Fuzzy with 0.8668 A, Fuzzy-PI with 7.654 A, and ANFIS, with 11.5472 A. Hence, the Fuzzy logic controller-based system is found to be the best candidate for SSE control of rotor current. An ANFIS-based controller has the best settling time for rotor currents control, whereas the Fuzzy-PI found to be best for SSE and torque control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Extended state observer-based primary load frequency controller for power systems with ultra-high wind-energy penetration Quantifying the impact of sensor precision on power output of a wind turbine: A sensitivity analysis via Monte Carlo simulation study Design and realization of a pre-production platform for wind turbine manufacturing Analysis of wind power curve modeling using multi-model regression On the aerodynamics of dual-stage co-axial vertical-axis wind turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1