并置FDA-MIMO雷达的可行稀疏频谱拟合和距离估计

Jingyu Cong, Xianpeng Wang, Mengxing Huang, G. Bi
{"title":"并置FDA-MIMO雷达的可行稀疏频谱拟合和距离估计","authors":"Jingyu Cong, Xianpeng Wang, Mengxing Huang, G. Bi","doi":"10.1109/SAM48682.2020.9104380","DOIUrl":null,"url":null,"abstract":"The size of an over complete dictionary seriously affects the computation speed of on-grid sparse algorithms. In the case of multi parameter estimation, the required dictionary size increases rapidly by multiplication to ensure the accuracy of the results. Therefore, it becomes infeasible to estimate all of the parameters directly by on-grid methods. In this paper, the feasible sparse spectrum fitting (SpSF) algorithm for computing both the direction of arrival (DOA) and range estimation in collocated FDA-MIMO radars is introduced. Firstly, due to fact that a receive spatial frequency only depends on the angle, a covariance fitting technique for data preprocessing is adopted to reshape the data for DOA estimation. Next, the range is calculated in the transmit-receive spatial frequency domain by the SpSF algorithm. In addition, to improve the computational efficiency for an increased number of targets, the traditional convex optimization is replaced with a one-dimensional peak search approximation. Numerical simulations are carried out to verify the effectiveness of the proposed approach.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"82 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feasible Sparse Spectrum Fitting of DOA and Range Estimation for Collocated FDA-MIMO radars\",\"authors\":\"Jingyu Cong, Xianpeng Wang, Mengxing Huang, G. Bi\",\"doi\":\"10.1109/SAM48682.2020.9104380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The size of an over complete dictionary seriously affects the computation speed of on-grid sparse algorithms. In the case of multi parameter estimation, the required dictionary size increases rapidly by multiplication to ensure the accuracy of the results. Therefore, it becomes infeasible to estimate all of the parameters directly by on-grid methods. In this paper, the feasible sparse spectrum fitting (SpSF) algorithm for computing both the direction of arrival (DOA) and range estimation in collocated FDA-MIMO radars is introduced. Firstly, due to fact that a receive spatial frequency only depends on the angle, a covariance fitting technique for data preprocessing is adopted to reshape the data for DOA estimation. Next, the range is calculated in the transmit-receive spatial frequency domain by the SpSF algorithm. In addition, to improve the computational efficiency for an increased number of targets, the traditional convex optimization is replaced with a one-dimensional peak search approximation. Numerical simulations are carried out to verify the effectiveness of the proposed approach.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"82 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

过完整字典的大小严重影响了网格稀疏算法的计算速度。在多参数估计的情况下,为了保证结果的准确性,需要的字典大小通过乘法快速增加。因此,用网格法直接估计所有参数是不可行的。本文介绍了一种可行稀疏频谱拟合算法,用于同时计算FDA-MIMO雷达的到达方向(DOA)和距离估计。首先,由于接收空间频率只依赖于角度,采用协方差拟合技术进行数据预处理,对数据进行重构,进行DOA估计;然后,利用SpSF算法在发射-接收空间频域计算距离。此外,为了提高目标数量增加时的计算效率,将传统的凸优化方法替换为一维峰值搜索近似方法。通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasible Sparse Spectrum Fitting of DOA and Range Estimation for Collocated FDA-MIMO radars
The size of an over complete dictionary seriously affects the computation speed of on-grid sparse algorithms. In the case of multi parameter estimation, the required dictionary size increases rapidly by multiplication to ensure the accuracy of the results. Therefore, it becomes infeasible to estimate all of the parameters directly by on-grid methods. In this paper, the feasible sparse spectrum fitting (SpSF) algorithm for computing both the direction of arrival (DOA) and range estimation in collocated FDA-MIMO radars is introduced. Firstly, due to fact that a receive spatial frequency only depends on the angle, a covariance fitting technique for data preprocessing is adopted to reshape the data for DOA estimation. Next, the range is calculated in the transmit-receive spatial frequency domain by the SpSF algorithm. In addition, to improve the computational efficiency for an increased number of targets, the traditional convex optimization is replaced with a one-dimensional peak search approximation. Numerical simulations are carried out to verify the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1