{"title":"借款人使用二元物流回归模型失败的概率分析","authors":"Krishna Prafidya Romantica","doi":"10.36407/jmsab.v2i2.87","DOIUrl":null,"url":null,"abstract":"Credit distribution is an activity that dominates the bank's business in its function as an intermediary institution. In the process of lending, banks are often faced with a risk known as credit risk or problem loans. One of the causes of problem loans is the failure of banks to conduct credit analysis to prospective borrowers. The process of credit analysis of prospective debtors is carried out by coding the dummy variables involved in the research data. After that, the independent variable is estimated by its parameter value by maximizing the Likelihood function. The estimated value of the parameters was tested for significance by using the Likelihood Ratio test, the Wald test, and the Hosmer and Lameshow tests. At the 95% significance level, there are four independent variables that significantly affect problem loans, namely Age, Year_Emp, Income, and Debt_Income. The estimated parameter values of significance are substituted into the Binary Logistic Regression Model to determine the probability of debtor default.","PeriodicalId":17763,"journal":{"name":"Jurnal Manajemen Strategi dan Aplikasi Bisnis","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis probabilitas gagal bayar (problem loans) debitur menggunakan model regresi logistik biner\",\"authors\":\"Krishna Prafidya Romantica\",\"doi\":\"10.36407/jmsab.v2i2.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit distribution is an activity that dominates the bank's business in its function as an intermediary institution. In the process of lending, banks are often faced with a risk known as credit risk or problem loans. One of the causes of problem loans is the failure of banks to conduct credit analysis to prospective borrowers. The process of credit analysis of prospective debtors is carried out by coding the dummy variables involved in the research data. After that, the independent variable is estimated by its parameter value by maximizing the Likelihood function. The estimated value of the parameters was tested for significance by using the Likelihood Ratio test, the Wald test, and the Hosmer and Lameshow tests. At the 95% significance level, there are four independent variables that significantly affect problem loans, namely Age, Year_Emp, Income, and Debt_Income. The estimated parameter values of significance are substituted into the Binary Logistic Regression Model to determine the probability of debtor default.\",\"PeriodicalId\":17763,\"journal\":{\"name\":\"Jurnal Manajemen Strategi dan Aplikasi Bisnis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Manajemen Strategi dan Aplikasi Bisnis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36407/jmsab.v2i2.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Manajemen Strategi dan Aplikasi Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36407/jmsab.v2i2.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis probabilitas gagal bayar (problem loans) debitur menggunakan model regresi logistik biner
Credit distribution is an activity that dominates the bank's business in its function as an intermediary institution. In the process of lending, banks are often faced with a risk known as credit risk or problem loans. One of the causes of problem loans is the failure of banks to conduct credit analysis to prospective borrowers. The process of credit analysis of prospective debtors is carried out by coding the dummy variables involved in the research data. After that, the independent variable is estimated by its parameter value by maximizing the Likelihood function. The estimated value of the parameters was tested for significance by using the Likelihood Ratio test, the Wald test, and the Hosmer and Lameshow tests. At the 95% significance level, there are four independent variables that significantly affect problem loans, namely Age, Year_Emp, Income, and Debt_Income. The estimated parameter values of significance are substituted into the Binary Logistic Regression Model to determine the probability of debtor default.