{"title":"重力热管中气液两相流态及传热特性的数值研究","authors":"Peng Lu, Xiaodie Yan, Qinshan Yang, Jianghong Wei","doi":"10.1115/1.4063243","DOIUrl":null,"url":null,"abstract":"\n In order to reveal the gas-liquid distribution, heat and mass transfer characteristics inside a gravity heat pipe, the bubble behavior and the flow regime transition during the phase-change process were examined by employing a copper-water heat pipe, with the length of 500 mm and Φ22 × 1.5 mm. The results indicate that in the process of phase change, the typical flow regimes of bubble flow, slug flow and churn flow can be observed in the evaporator, and the presence of bubbles has an obvious disturbance on the flow field. In addition, the discontinuous liquid film plays an important role in the heat transfer mechanism in the condenser, which allows the vapor to contact the wall directly and reduces the heat transfer resistance. The temperature difference between the evaporator and the condenser can be reduced by adjusting the saturation temperature, so as to effectively improve the heat transfer performance of the heat pipe and contribute to the practical engineering design.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"5 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation into the gas-liquid two-phase flow regime and heat transfer characteristics in a gravity heat pipe\",\"authors\":\"Peng Lu, Xiaodie Yan, Qinshan Yang, Jianghong Wei\",\"doi\":\"10.1115/1.4063243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to reveal the gas-liquid distribution, heat and mass transfer characteristics inside a gravity heat pipe, the bubble behavior and the flow regime transition during the phase-change process were examined by employing a copper-water heat pipe, with the length of 500 mm and Φ22 × 1.5 mm. The results indicate that in the process of phase change, the typical flow regimes of bubble flow, slug flow and churn flow can be observed in the evaporator, and the presence of bubbles has an obvious disturbance on the flow field. In addition, the discontinuous liquid film plays an important role in the heat transfer mechanism in the condenser, which allows the vapor to contact the wall directly and reduces the heat transfer resistance. The temperature difference between the evaporator and the condenser can be reduced by adjusting the saturation temperature, so as to effectively improve the heat transfer performance of the heat pipe and contribute to the practical engineering design.\",\"PeriodicalId\":17404,\"journal\":{\"name\":\"Journal of Thermal Science and Engineering Applications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Engineering Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063243\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063243","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical investigation into the gas-liquid two-phase flow regime and heat transfer characteristics in a gravity heat pipe
In order to reveal the gas-liquid distribution, heat and mass transfer characteristics inside a gravity heat pipe, the bubble behavior and the flow regime transition during the phase-change process were examined by employing a copper-water heat pipe, with the length of 500 mm and Φ22 × 1.5 mm. The results indicate that in the process of phase change, the typical flow regimes of bubble flow, slug flow and churn flow can be observed in the evaporator, and the presence of bubbles has an obvious disturbance on the flow field. In addition, the discontinuous liquid film plays an important role in the heat transfer mechanism in the condenser, which allows the vapor to contact the wall directly and reduces the heat transfer resistance. The temperature difference between the evaporator and the condenser can be reduced by adjusting the saturation temperature, so as to effectively improve the heat transfer performance of the heat pipe and contribute to the practical engineering design.
期刊介绍:
Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems