使用超亲水性纳米孔表面对热点进行液体冷却

Shailesh Malla, Miguel Amaya, H. Moon, S. M. You
{"title":"使用超亲水性纳米孔表面对热点进行液体冷却","authors":"Shailesh Malla, Miguel Amaya, H. Moon, S. M. You","doi":"10.1109/ITHERM.2014.6892298","DOIUrl":null,"url":null,"abstract":"The performance of thin-film evaporative cooling for near-junction thermal management was investigated. A liquid delivery system capable of delivering water in small volumes ranging 20~75 nl at frequencies of up to 600 Hz was established. On one side of the silicon chip, a resistive heating layer of 2 mm × 2 mm was fabricated to emulate the high heat flux hot-spot, and on the other side a superhydrophilic nanoporous coating (SHNC) was applied over an area of 10 mm × 10 mm. With the aid of the nanoporous coating, delivered droplets spread into thin films of thicknesses less than 10 μm. With this system, evaporative tests were conducted in ambient in an effort to maximize dryout heat flux and evaporative heat transfer coefficient. During the tests, heat flux at the hot spot was varied to values above 1000 W/cm2. Water was delivered at either given constant frequency (constant mass flow rate) or programmed variations of frequency (variable mass flow rate), for a given nanoliter dose volume. Heat flux and hot spot surface temperatures were recorded upon reaching steady state at each applied heat flux increment. A mixed mode of cooling consisting of simultaneous thin-film evaporation and boiling was observed. Relative to bare silicon surface, dryout heat flux of the SHNC surface was found to increase by ~5 times at 500~600 Hz.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"36 1","pages":"317-325"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Liquid cooling of a hot spot using a superhydrophilic nanoporous surface\",\"authors\":\"Shailesh Malla, Miguel Amaya, H. Moon, S. M. You\",\"doi\":\"10.1109/ITHERM.2014.6892298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of thin-film evaporative cooling for near-junction thermal management was investigated. A liquid delivery system capable of delivering water in small volumes ranging 20~75 nl at frequencies of up to 600 Hz was established. On one side of the silicon chip, a resistive heating layer of 2 mm × 2 mm was fabricated to emulate the high heat flux hot-spot, and on the other side a superhydrophilic nanoporous coating (SHNC) was applied over an area of 10 mm × 10 mm. With the aid of the nanoporous coating, delivered droplets spread into thin films of thicknesses less than 10 μm. With this system, evaporative tests were conducted in ambient in an effort to maximize dryout heat flux and evaporative heat transfer coefficient. During the tests, heat flux at the hot spot was varied to values above 1000 W/cm2. Water was delivered at either given constant frequency (constant mass flow rate) or programmed variations of frequency (variable mass flow rate), for a given nanoliter dose volume. Heat flux and hot spot surface temperatures were recorded upon reaching steady state at each applied heat flux increment. A mixed mode of cooling consisting of simultaneous thin-film evaporation and boiling was observed. Relative to bare silicon surface, dryout heat flux of the SHNC surface was found to increase by ~5 times at 500~600 Hz.\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"36 1\",\"pages\":\"317-325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了薄膜蒸发冷却在近结热管理中的性能。建立了一种能够以高达600 Hz的频率以20~75 nl的小体积输送水的液体输送系统。在硅片的一侧制作了2 mm × 2 mm的电阻加热层来模拟高热流密度热点,另一侧在10 mm × 10 mm的面积上涂有超亲水性纳米孔涂层(SHNC)。在纳米孔涂层的帮助下,输送的液滴扩散成厚度小于10 μm的薄膜。利用该系统在环境中进行了蒸发试验,以最大限度地提高干热流密度和蒸发换热系数。在试验过程中,热点处的热流密度变化到1000 W/cm2以上。对于给定的纳升剂量体积,水以给定的恒定频率(恒定质量流量)或编程的频率变化(可变质量流量)输送。在每一次热流增量达到稳定状态时,记录热流密度和热点表面温度。同时观察到薄膜蒸发和沸腾的混合冷却模式。在500~600 Hz时,相对于裸硅表面,SHNC表面的干热流密度增加了约5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Liquid cooling of a hot spot using a superhydrophilic nanoporous surface
The performance of thin-film evaporative cooling for near-junction thermal management was investigated. A liquid delivery system capable of delivering water in small volumes ranging 20~75 nl at frequencies of up to 600 Hz was established. On one side of the silicon chip, a resistive heating layer of 2 mm × 2 mm was fabricated to emulate the high heat flux hot-spot, and on the other side a superhydrophilic nanoporous coating (SHNC) was applied over an area of 10 mm × 10 mm. With the aid of the nanoporous coating, delivered droplets spread into thin films of thicknesses less than 10 μm. With this system, evaporative tests were conducted in ambient in an effort to maximize dryout heat flux and evaporative heat transfer coefficient. During the tests, heat flux at the hot spot was varied to values above 1000 W/cm2. Water was delivered at either given constant frequency (constant mass flow rate) or programmed variations of frequency (variable mass flow rate), for a given nanoliter dose volume. Heat flux and hot spot surface temperatures were recorded upon reaching steady state at each applied heat flux increment. A mixed mode of cooling consisting of simultaneous thin-film evaporation and boiling was observed. Relative to bare silicon surface, dryout heat flux of the SHNC surface was found to increase by ~5 times at 500~600 Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material behavior of SAC305 under high strain rate at high temperature Phase-separation of wetting fluids using nanoporous alumina membranes and micro-glass capillaries Nature-inspired enhanced microscale heat transfer in macro geometry Transient thermal imaging characterization of a die attached optoelectronic device on silicon A model for the free (top) surface deformation of through-silicon vias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1