采用AM-FM模型的MRI脑图像分割

M.S. Patichis, H. Petropoulos, W. Brooks
{"title":"采用AM-FM模型的MRI脑图像分割","authors":"M.S. Patichis, H. Petropoulos, W. Brooks","doi":"10.1109/ACSSC.2000.910646","DOIUrl":null,"url":null,"abstract":"MRI brain images are characterized by non-stationary components that make fully automated segmentation a challenging task. An AM-FM model is used to model these non-stationarities. Using the AM-FM model, a new, fully automated texture segmentation system is used to automatically segment the cerebellum from a 3-D set of MRI brain images.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"6 1","pages":"906-910 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRI brain image segmentation using an AM-FM model\",\"authors\":\"M.S. Patichis, H. Petropoulos, W. Brooks\",\"doi\":\"10.1109/ACSSC.2000.910646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MRI brain images are characterized by non-stationary components that make fully automated segmentation a challenging task. An AM-FM model is used to model these non-stationarities. Using the AM-FM model, a new, fully automated texture segmentation system is used to automatically segment the cerebellum from a 3-D set of MRI brain images.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"6 1\",\"pages\":\"906-910 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.910646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MRI脑图像具有非平稳成分的特点,使全自动分割成为一项具有挑战性的任务。采用AM-FM模型对这些非平稳性进行建模。利用AM-FM模型,一种新的全自动纹理分割系统被用于从一组三维MRI脑图像中自动分割小脑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI brain image segmentation using an AM-FM model
MRI brain images are characterized by non-stationary components that make fully automated segmentation a challenging task. An AM-FM model is used to model these non-stationarities. Using the AM-FM model, a new, fully automated texture segmentation system is used to automatically segment the cerebellum from a 3-D set of MRI brain images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized lapped biorthogonal transforms using lifting steps Linear unitary precoders for maximum diversity gains with multiple transmit and receive antennas An N2logN back-projection algorithm for SAR image formation A fast constant modulus algorithm for blind equalization A signal separation algorithm for fetal heart-rate estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1