Mostapha Karaoui, R. Hsissou, M. Alami, M. Assouag
{"title":"机械化学和热处理法制备螺壳粉的理化性质","authors":"Mostapha Karaoui, R. Hsissou, M. Alami, M. Assouag","doi":"10.55713/jmmm.v33i2.1700","DOIUrl":null,"url":null,"abstract":"Natural particles are the most abundant resources exist in nature. Bio-sources of CaCO3 particles have attracted the attention of researchers for multiple cosmetics, industrial, and medical applications. This work investigates the structural evolution of CaCO3 containing in snail shell particles prepared by a mechanochemical process using methods of characterization as well as Differential scanning calorimeter (DSC), Thermogravimetric analysis (TGA), X-ray diffraction (X-RD), Fourier transformation infra-red (FT-IR), and Scanning microscopy equipped with Energy-dispersive X-Ray spectroscopy (SEM-EDXS). The result obtained from the above analysis indicates that SSP calcined between 200℃ to 400℃ undergoes an elimination of water molecules, followed by a phase transformation from Aragonite to CaCO3 Calcite. At 800℃, the SSP decomposes CaCO3, giving rise to calcium oxide crystals CaO, which release CO2 molecules. These eliminations and transformations represent a loss of 47.08% of the initial mass at 800℃. The morphological analysis shows the surface of SSP calcined at 800℃ with CaO/CaCO3 crystal formation. Also, the mechanochemical process leads to obtaining an SSP with a size between 3.311 µm to 10.140 µm. Snail shells can be a natural source of CaCO3 and CaO, thanks to their ease of extraction and processing.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"91 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physico-chemical characterization of snail shells powder prepared by mechanochemical processes and thermal treatment\",\"authors\":\"Mostapha Karaoui, R. Hsissou, M. Alami, M. Assouag\",\"doi\":\"10.55713/jmmm.v33i2.1700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural particles are the most abundant resources exist in nature. Bio-sources of CaCO3 particles have attracted the attention of researchers for multiple cosmetics, industrial, and medical applications. This work investigates the structural evolution of CaCO3 containing in snail shell particles prepared by a mechanochemical process using methods of characterization as well as Differential scanning calorimeter (DSC), Thermogravimetric analysis (TGA), X-ray diffraction (X-RD), Fourier transformation infra-red (FT-IR), and Scanning microscopy equipped with Energy-dispersive X-Ray spectroscopy (SEM-EDXS). The result obtained from the above analysis indicates that SSP calcined between 200℃ to 400℃ undergoes an elimination of water molecules, followed by a phase transformation from Aragonite to CaCO3 Calcite. At 800℃, the SSP decomposes CaCO3, giving rise to calcium oxide crystals CaO, which release CO2 molecules. These eliminations and transformations represent a loss of 47.08% of the initial mass at 800℃. The morphological analysis shows the surface of SSP calcined at 800℃ with CaO/CaCO3 crystal formation. Also, the mechanochemical process leads to obtaining an SSP with a size between 3.311 µm to 10.140 µm. Snail shells can be a natural source of CaCO3 and CaO, thanks to their ease of extraction and processing.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i2.1700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i2.1700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Physico-chemical characterization of snail shells powder prepared by mechanochemical processes and thermal treatment
Natural particles are the most abundant resources exist in nature. Bio-sources of CaCO3 particles have attracted the attention of researchers for multiple cosmetics, industrial, and medical applications. This work investigates the structural evolution of CaCO3 containing in snail shell particles prepared by a mechanochemical process using methods of characterization as well as Differential scanning calorimeter (DSC), Thermogravimetric analysis (TGA), X-ray diffraction (X-RD), Fourier transformation infra-red (FT-IR), and Scanning microscopy equipped with Energy-dispersive X-Ray spectroscopy (SEM-EDXS). The result obtained from the above analysis indicates that SSP calcined between 200℃ to 400℃ undergoes an elimination of water molecules, followed by a phase transformation from Aragonite to CaCO3 Calcite. At 800℃, the SSP decomposes CaCO3, giving rise to calcium oxide crystals CaO, which release CO2 molecules. These eliminations and transformations represent a loss of 47.08% of the initial mass at 800℃. The morphological analysis shows the surface of SSP calcined at 800℃ with CaO/CaCO3 crystal formation. Also, the mechanochemical process leads to obtaining an SSP with a size between 3.311 µm to 10.140 µm. Snail shells can be a natural source of CaCO3 and CaO, thanks to their ease of extraction and processing.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.