脑电控制移动机器人的设计与开发

Sweta V. Munkanpalli, S. Sagat, M. Mali
{"title":"脑电控制移动机器人的设计与开发","authors":"Sweta V. Munkanpalli, S. Sagat, M. Mali","doi":"10.1109/ICAECCT.2016.7942569","DOIUrl":null,"url":null,"abstract":"Many research activities have taken place in the field of brain computer interface based on EEG signal. The main aim of this paper is to give a good potential for disabled people where driving is impossible task for them. This can be achieved mainly by four steps i.e signal acquisition, signal preprocessing, feature extraction and classification using MATLAB. For feature extraction DWT method and for classification SVM classifier is used. After the classification the commands are executed on Arduino board (model UNO R3). The experimental result showed that the robot can be controlled successfully.","PeriodicalId":6629,"journal":{"name":"2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)","volume":"14 1","pages":"133-138"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and development of EEG controlled mobile robots\",\"authors\":\"Sweta V. Munkanpalli, S. Sagat, M. Mali\",\"doi\":\"10.1109/ICAECCT.2016.7942569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many research activities have taken place in the field of brain computer interface based on EEG signal. The main aim of this paper is to give a good potential for disabled people where driving is impossible task for them. This can be achieved mainly by four steps i.e signal acquisition, signal preprocessing, feature extraction and classification using MATLAB. For feature extraction DWT method and for classification SVM classifier is used. After the classification the commands are executed on Arduino board (model UNO R3). The experimental result showed that the robot can be controlled successfully.\",\"PeriodicalId\":6629,\"journal\":{\"name\":\"2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)\",\"volume\":\"14 1\",\"pages\":\"133-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAECCT.2016.7942569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECCT.2016.7942569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于脑电信号的脑机接口研究已经开展了许多研究活动。本文的主要目的是为残疾人提供一个良好的潜力,因为驾驶对他们来说是不可能的任务。主要通过MATLAB实现信号采集、信号预处理、特征提取和分类四个步骤。特征提取采用DWT方法,分类采用SVM分类器。分类后的命令在Arduino板(型号为UNO R3)上执行。实验结果表明,该机器人是可以成功控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and development of EEG controlled mobile robots
Many research activities have taken place in the field of brain computer interface based on EEG signal. The main aim of this paper is to give a good potential for disabled people where driving is impossible task for them. This can be achieved mainly by four steps i.e signal acquisition, signal preprocessing, feature extraction and classification using MATLAB. For feature extraction DWT method and for classification SVM classifier is used. After the classification the commands are executed on Arduino board (model UNO R3). The experimental result showed that the robot can be controlled successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speakers Emotweet: Sentiment Analysis tool for twitter Design of faster & power efficient sense amplifier using VLSI technology A comparative study on distance measuring approches for permutation representations An embedded system of dedicated and real-time fire detector and locator technology as an interactive response mechanism in fire occurrences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1