Mathias De Brouwer, Bram Steenwinckel, Ziye Fang, Marija Stojchevska, P. Bonte, Filip De Turck, Sofie Van Hoecke, F. Ongenae
{"title":"物联网数据流的上下文感知查询派生,DIVIDE通过设计启用隐私","authors":"Mathias De Brouwer, Bram Steenwinckel, Ziye Fang, Marija Stojchevska, P. Bonte, Filip De Turck, Sofie Van Hoecke, F. Ongenae","doi":"10.3233/sw-223281","DOIUrl":null,"url":null,"abstract":"Integrating Internet of Things (IoT) sensor data from heterogeneous sources with domain knowledge and context information in real-time is a challenging task in IoT healthcare data management applications that can be solved with semantics. Existing IoT platforms often have issues with preserving the privacy of patient data. Moreover, configuring and managing context-aware stream processing queries in semantic IoT platforms requires much manual, labor-intensive effort. Generic queries can deal with context changes but often lead to performance issues caused by the need for expressive real-time semantic reasoning. In addition, query window parameters are part of the manual configuration and cannot be made context-dependent. To tackle these problems, this paper presents DIVIDE, a component for a semantic IoT platform that adaptively derives and manages the queries of the platform’s stream processing components in a context-aware and scalable manner, and that enables privacy by design. By performing semantic reasoning to derive the queries when context changes are observed, their real-time evaluation does require any reasoning. The results of an evaluation on a homecare monitoring use case demonstrate how activity detection queries derived with DIVIDE can be evaluated in on average less than 3.7 seconds and can therefore successfully run on low-end IoT devices.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"27 1","pages":"893-941"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Context-aware query derivation for IoT data streams with DIVIDE enabling privacy by design\",\"authors\":\"Mathias De Brouwer, Bram Steenwinckel, Ziye Fang, Marija Stojchevska, P. Bonte, Filip De Turck, Sofie Van Hoecke, F. Ongenae\",\"doi\":\"10.3233/sw-223281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating Internet of Things (IoT) sensor data from heterogeneous sources with domain knowledge and context information in real-time is a challenging task in IoT healthcare data management applications that can be solved with semantics. Existing IoT platforms often have issues with preserving the privacy of patient data. Moreover, configuring and managing context-aware stream processing queries in semantic IoT platforms requires much manual, labor-intensive effort. Generic queries can deal with context changes but often lead to performance issues caused by the need for expressive real-time semantic reasoning. In addition, query window parameters are part of the manual configuration and cannot be made context-dependent. To tackle these problems, this paper presents DIVIDE, a component for a semantic IoT platform that adaptively derives and manages the queries of the platform’s stream processing components in a context-aware and scalable manner, and that enables privacy by design. By performing semantic reasoning to derive the queries when context changes are observed, their real-time evaluation does require any reasoning. The results of an evaluation on a homecare monitoring use case demonstrate how activity detection queries derived with DIVIDE can be evaluated in on average less than 3.7 seconds and can therefore successfully run on low-end IoT devices.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"27 1\",\"pages\":\"893-941\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-223281\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-223281","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Context-aware query derivation for IoT data streams with DIVIDE enabling privacy by design
Integrating Internet of Things (IoT) sensor data from heterogeneous sources with domain knowledge and context information in real-time is a challenging task in IoT healthcare data management applications that can be solved with semantics. Existing IoT platforms often have issues with preserving the privacy of patient data. Moreover, configuring and managing context-aware stream processing queries in semantic IoT platforms requires much manual, labor-intensive effort. Generic queries can deal with context changes but often lead to performance issues caused by the need for expressive real-time semantic reasoning. In addition, query window parameters are part of the manual configuration and cannot be made context-dependent. To tackle these problems, this paper presents DIVIDE, a component for a semantic IoT platform that adaptively derives and manages the queries of the platform’s stream processing components in a context-aware and scalable manner, and that enables privacy by design. By performing semantic reasoning to derive the queries when context changes are observed, their real-time evaluation does require any reasoning. The results of an evaluation on a homecare monitoring use case demonstrate how activity detection queries derived with DIVIDE can be evaluated in on average less than 3.7 seconds and can therefore successfully run on low-end IoT devices.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.