{"title":"部分还原高通量DRI球团对实验室规模电炉炼钢过程中杂质去除的影响","authors":"R. K. Dishwar, O. P. Sinha","doi":"10.2298/jmmb210319050d","DOIUrl":null,"url":null,"abstract":"The present work represents a comparative study on the impurities removal from pig iron melt by addition of partially reduced highly fluxed direct reduced iron (DRI) to make steel in a 2 kg capacity electric arc furnace (EAF). Three types of fluxed DRI (30, 50, 80% Reduction (%R) with similar basicity-8) were used to maintain different level of oxidizing potential on the bath for studying the kinetic behaviour of impurities removal from melt. Results showed that the rate of removal of impurities (i.e. C, Si, Mn, P, S etc.) was increased initially up to 5 minutes of reaction time then decreased afterwards. Phosphorus (~64%), sulfur (~16%) and carbon (~94%) were removed simultaneously up to 25 minutes of reaction time using 30%R fluxed DRI. Similarly, phosphorus (~33%), sulfur (~50%) and carbon (~62%) were removed simultaneously using 50%R fluxed DRI while highly reduced (80%R) flux DRI removed sulfur (~58%), carbon (~56%) with a small fraction of phosphorus (~18%) from pig iron. It was observed in all the cases that silicon (>99%) and manganese (>80%) were removed. From the present study, it can be concluded that ~30%R DRI is favorable for effective phosphorus removal whereas ~80%R is favorable for sulfur removal. The significant removal of impurities could be achieved by charging ~50%R fluxed DRI in the pig iron melt.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"42 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of partially reduced highly fluxed DRI pellets on impurities removal during steelmaking using a laboratory scale EAF\",\"authors\":\"R. K. Dishwar, O. P. Sinha\",\"doi\":\"10.2298/jmmb210319050d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work represents a comparative study on the impurities removal from pig iron melt by addition of partially reduced highly fluxed direct reduced iron (DRI) to make steel in a 2 kg capacity electric arc furnace (EAF). Three types of fluxed DRI (30, 50, 80% Reduction (%R) with similar basicity-8) were used to maintain different level of oxidizing potential on the bath for studying the kinetic behaviour of impurities removal from melt. Results showed that the rate of removal of impurities (i.e. C, Si, Mn, P, S etc.) was increased initially up to 5 minutes of reaction time then decreased afterwards. Phosphorus (~64%), sulfur (~16%) and carbon (~94%) were removed simultaneously up to 25 minutes of reaction time using 30%R fluxed DRI. Similarly, phosphorus (~33%), sulfur (~50%) and carbon (~62%) were removed simultaneously using 50%R fluxed DRI while highly reduced (80%R) flux DRI removed sulfur (~58%), carbon (~56%) with a small fraction of phosphorus (~18%) from pig iron. It was observed in all the cases that silicon (>99%) and manganese (>80%) were removed. From the present study, it can be concluded that ~30%R DRI is favorable for effective phosphorus removal whereas ~80%R is favorable for sulfur removal. The significant removal of impurities could be achieved by charging ~50%R fluxed DRI in the pig iron melt.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb210319050d\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb210319050d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of partially reduced highly fluxed DRI pellets on impurities removal during steelmaking using a laboratory scale EAF
The present work represents a comparative study on the impurities removal from pig iron melt by addition of partially reduced highly fluxed direct reduced iron (DRI) to make steel in a 2 kg capacity electric arc furnace (EAF). Three types of fluxed DRI (30, 50, 80% Reduction (%R) with similar basicity-8) were used to maintain different level of oxidizing potential on the bath for studying the kinetic behaviour of impurities removal from melt. Results showed that the rate of removal of impurities (i.e. C, Si, Mn, P, S etc.) was increased initially up to 5 minutes of reaction time then decreased afterwards. Phosphorus (~64%), sulfur (~16%) and carbon (~94%) were removed simultaneously up to 25 minutes of reaction time using 30%R fluxed DRI. Similarly, phosphorus (~33%), sulfur (~50%) and carbon (~62%) were removed simultaneously using 50%R fluxed DRI while highly reduced (80%R) flux DRI removed sulfur (~58%), carbon (~56%) with a small fraction of phosphorus (~18%) from pig iron. It was observed in all the cases that silicon (>99%) and manganese (>80%) were removed. From the present study, it can be concluded that ~30%R DRI is favorable for effective phosphorus removal whereas ~80%R is favorable for sulfur removal. The significant removal of impurities could be achieved by charging ~50%R fluxed DRI in the pig iron melt.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.