动态场景视频中的自动围栏分割

Renjiao Yi, Jue Wang, P. Tan
{"title":"动态场景视频中的自动围栏分割","authors":"Renjiao Yi, Jue Wang, P. Tan","doi":"10.1109/CVPR.2016.83","DOIUrl":null,"url":null,"abstract":"We present a fully automatic approach to detect and segment fence-like occluders from a video clip. Unlike previous approaches that usually assume either static scenes or cameras, our method is capable of handling both dynamic scenes and moving cameras. Under a bottom-up framework, it first clusters pixels into coherent groups using color and motion features. These pixel groups are then analyzed in a fully connected graph, and labeled as either fence or non-fence using graph-cut optimization. Finally, we solve a dense Conditional Random Filed (CRF) constructed from multiple frames to enhance both spatial accuracy and temporal coherence of the segmentation. Once segmented, one can use existing hole-filling methods to generate a fencefree output. Extensive evaluation suggests that our method outperforms previous automatic and interactive approaches on complex examples captured by mobile devices.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"120 1","pages":"705-713"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Automatic Fence Segmentation in Videos of Dynamic Scenes\",\"authors\":\"Renjiao Yi, Jue Wang, P. Tan\",\"doi\":\"10.1109/CVPR.2016.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fully automatic approach to detect and segment fence-like occluders from a video clip. Unlike previous approaches that usually assume either static scenes or cameras, our method is capable of handling both dynamic scenes and moving cameras. Under a bottom-up framework, it first clusters pixels into coherent groups using color and motion features. These pixel groups are then analyzed in a fully connected graph, and labeled as either fence or non-fence using graph-cut optimization. Finally, we solve a dense Conditional Random Filed (CRF) constructed from multiple frames to enhance both spatial accuracy and temporal coherence of the segmentation. Once segmented, one can use existing hole-filling methods to generate a fencefree output. Extensive evaluation suggests that our method outperforms previous automatic and interactive approaches on complex examples captured by mobile devices.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"120 1\",\"pages\":\"705-713\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一种全自动的方法来检测和分割视频剪辑中的栅栏状遮挡物。不像以前的方法通常假设静态场景或摄像机,我们的方法能够处理动态场景和移动摄像机。在自下而上的框架下,它首先使用颜色和运动特征将像素聚类成连贯的组。然后在一个完全连接的图中分析这些像素组,并使用图切割优化标记为栅栏或非栅栏。最后,我们求解了一个由多帧图像构成的密集条件随机场(CRF),以提高分割的空间精度和时间相干性。一旦分割,就可以使用现有的填充方法来生成无栅栏的输出。广泛的评估表明,我们的方法在移动设备捕获的复杂示例上优于以前的自动和交互式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Fence Segmentation in Videos of Dynamic Scenes
We present a fully automatic approach to detect and segment fence-like occluders from a video clip. Unlike previous approaches that usually assume either static scenes or cameras, our method is capable of handling both dynamic scenes and moving cameras. Under a bottom-up framework, it first clusters pixels into coherent groups using color and motion features. These pixel groups are then analyzed in a fully connected graph, and labeled as either fence or non-fence using graph-cut optimization. Finally, we solve a dense Conditional Random Filed (CRF) constructed from multiple frames to enhance both spatial accuracy and temporal coherence of the segmentation. Once segmented, one can use existing hole-filling methods to generate a fencefree output. Extensive evaluation suggests that our method outperforms previous automatic and interactive approaches on complex examples captured by mobile devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1