纳滤在废水浓缩回收硫酸钠中的应用

R. S. Gawaad, S. Sharma, S. Sambi
{"title":"纳滤在废水浓缩回收硫酸钠中的应用","authors":"R. S. Gawaad, S. Sharma, S. Sambi","doi":"10.15866/IREBIC.V4I4.1653","DOIUrl":null,"url":null,"abstract":"Sodium sulphate is one of most important salts of sodium which is mainly used in the manufacture of detergents, Kraft paper, glass, sodium salts, ceramic glazes, pharmaceuticals, dyeing of textile fibers etc. Part of its requirement is met from by-products of manufacturing processes like Aluminium silicate, rayon etc. Presently, evaporation followed by crystallization is the preferred technique for recovery of the salt. This technique becomes uneconomical when the waste water has low concentration of the salt. There is a need to develop new techniques for economical concentration of sodium sulphate. Keeping this in mind efforts were made to test the performance of two commercial CSM membranes Model Nos. NE-1812-70 and RE 1812-50 for concentrating the waste water stream. The results show that waste water stream could be concentrated, at pressure of 25 bar, up to 14.1% at permeate flux of 2.08L-min-1-m-2 with NE-1812-70 membrane compared to 9.29% at permeate flux of 0.62 L-min-1-m-2 with RE 1812-50 membrane","PeriodicalId":14377,"journal":{"name":"International Review of Biophysical Chemistry","volume":"70 1","pages":"152-156"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanofiltration Application for Concentrating Aqueous Waste Stream to Recover Sodium Sulphate\",\"authors\":\"R. S. Gawaad, S. Sharma, S. Sambi\",\"doi\":\"10.15866/IREBIC.V4I4.1653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sodium sulphate is one of most important salts of sodium which is mainly used in the manufacture of detergents, Kraft paper, glass, sodium salts, ceramic glazes, pharmaceuticals, dyeing of textile fibers etc. Part of its requirement is met from by-products of manufacturing processes like Aluminium silicate, rayon etc. Presently, evaporation followed by crystallization is the preferred technique for recovery of the salt. This technique becomes uneconomical when the waste water has low concentration of the salt. There is a need to develop new techniques for economical concentration of sodium sulphate. Keeping this in mind efforts were made to test the performance of two commercial CSM membranes Model Nos. NE-1812-70 and RE 1812-50 for concentrating the waste water stream. The results show that waste water stream could be concentrated, at pressure of 25 bar, up to 14.1% at permeate flux of 2.08L-min-1-m-2 with NE-1812-70 membrane compared to 9.29% at permeate flux of 0.62 L-min-1-m-2 with RE 1812-50 membrane\",\"PeriodicalId\":14377,\"journal\":{\"name\":\"International Review of Biophysical Chemistry\",\"volume\":\"70 1\",\"pages\":\"152-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Biophysical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREBIC.V4I4.1653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Biophysical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREBIC.V4I4.1653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硫酸钠是最重要的钠盐之一,主要用于制造洗涤剂、牛皮纸、玻璃、钠盐、陶瓷釉料、制药、纺织纤维染色等。部分需求由硅酸铝、人造丝等生产过程的副产品来满足。目前,蒸发再结晶是回收盐的首选技术。当废水含盐量较低时,该工艺不经济。有必要开发经济浓缩硫酸钠的新技术。考虑到这一点,我们进行了两种商用CSM膜的性能测试,型号为NE-1812-70和RE 1812-50,用于浓缩废水流。结果表明,在25 bar压力下,NE-1812-70膜在渗透通量为2.08L-min-1-m-2时的废水浓缩率可达14.1%,而RE 1812-50膜在渗透通量为0.62 L-min-1-m-2时的废水浓缩率为9.29%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanofiltration Application for Concentrating Aqueous Waste Stream to Recover Sodium Sulphate
Sodium sulphate is one of most important salts of sodium which is mainly used in the manufacture of detergents, Kraft paper, glass, sodium salts, ceramic glazes, pharmaceuticals, dyeing of textile fibers etc. Part of its requirement is met from by-products of manufacturing processes like Aluminium silicate, rayon etc. Presently, evaporation followed by crystallization is the preferred technique for recovery of the salt. This technique becomes uneconomical when the waste water has low concentration of the salt. There is a need to develop new techniques for economical concentration of sodium sulphate. Keeping this in mind efforts were made to test the performance of two commercial CSM membranes Model Nos. NE-1812-70 and RE 1812-50 for concentrating the waste water stream. The results show that waste water stream could be concentrated, at pressure of 25 bar, up to 14.1% at permeate flux of 2.08L-min-1-m-2 with NE-1812-70 membrane compared to 9.29% at permeate flux of 0.62 L-min-1-m-2 with RE 1812-50 membrane
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biocoagulants for Water and Waste Water Purification: a Review Optimisation of Poly(γ-Glutamic Acid) Production by Bacillus velezensis NRRL B – 23189 in Liquid Fermentation with Molasses as the Carbon Source without Addition of Glutamic Acid Effects of Transesterification Parameters on the Biodiesel Produced from Crude Groundnut Oil Effect of Filling Kinetic of Sequencing Batch Reactor on the Poultry Wastewater Treatment Technology and Engineering of Biodiesel Production: a Comparative Study between Microalgae and Other Non-Photosynthetic Oleaginous Microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1