Deep CG2Real:基于图像解纠缠的合成到真实的翻译

Sai Bi, Kalyan Sunkavalli, Federico Perazzi, Eli Shechtman, Vladimir G. Kim, R. Ramamoorthi, U. Diego
{"title":"Deep CG2Real:基于图像解纠缠的合成到真实的翻译","authors":"Sai Bi, Kalyan Sunkavalli, Federico Perazzi, Eli Shechtman, Vladimir G. Kim, R. Ramamoorthi, U. Diego","doi":"10.1109/ICCV.2019.00282","DOIUrl":null,"url":null,"abstract":"We present a method to improve the visual realism of low-quality, synthetic images, e.g. OpenGL renderings. Training an unpaired synthetic-to-real translation network in image space is severely under-constrained and produces visible artifacts. Instead, we propose a semi-supervised approach that operates on the disentangled shading and albedo layers of the image. Our two-stage pipeline first learns to predict accurate shading in a supervised fashion using physically-based renderings as targets, and further increases the realism of the textures and shading with an improved CycleGAN network. Extensive evaluations on the SUNCG indoor scene dataset demonstrate that our approach yields more realistic images compared to other state-of-the-art approaches. Furthermore, networks trained on our generated ``real'' images predict more accurate depth and normals than domain adaptation approaches, suggesting that improving the visual realism of the images can be more effective than imposing task-specific losses.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"120 1","pages":"2730-2739"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement\",\"authors\":\"Sai Bi, Kalyan Sunkavalli, Federico Perazzi, Eli Shechtman, Vladimir G. Kim, R. Ramamoorthi, U. Diego\",\"doi\":\"10.1109/ICCV.2019.00282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method to improve the visual realism of low-quality, synthetic images, e.g. OpenGL renderings. Training an unpaired synthetic-to-real translation network in image space is severely under-constrained and produces visible artifacts. Instead, we propose a semi-supervised approach that operates on the disentangled shading and albedo layers of the image. Our two-stage pipeline first learns to predict accurate shading in a supervised fashion using physically-based renderings as targets, and further increases the realism of the textures and shading with an improved CycleGAN network. Extensive evaluations on the SUNCG indoor scene dataset demonstrate that our approach yields more realistic images compared to other state-of-the-art approaches. Furthermore, networks trained on our generated ``real'' images predict more accurate depth and normals than domain adaptation approaches, suggesting that improving the visual realism of the images can be more effective than imposing task-specific losses.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"120 1\",\"pages\":\"2730-2739\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

我们提出了一种提高低质量合成图像(如OpenGL渲染)的视觉真实感的方法。在图像空间中训练一个不成对的合成到真实的翻译网络是严重缺乏约束的,并且会产生可见的伪影。相反,我们提出了一种半监督方法,该方法对图像的未纠缠的阴影和反照率层进行操作。我们的两阶段管道首先学习使用基于物理的渲染作为目标,以监督的方式预测准确的阴影,并通过改进的CycleGAN网络进一步增加纹理和阴影的真实感。对SUNCG室内场景数据集的广泛评估表明,与其他最先进的方法相比,我们的方法产生了更逼真的图像。此外,在我们生成的“真实”图像上训练的网络预测的深度和法线比域适应方法更准确,这表明提高图像的视觉真实感比强加特定任务的损失更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement
We present a method to improve the visual realism of low-quality, synthetic images, e.g. OpenGL renderings. Training an unpaired synthetic-to-real translation network in image space is severely under-constrained and produces visible artifacts. Instead, we propose a semi-supervised approach that operates on the disentangled shading and albedo layers of the image. Our two-stage pipeline first learns to predict accurate shading in a supervised fashion using physically-based renderings as targets, and further increases the realism of the textures and shading with an improved CycleGAN network. Extensive evaluations on the SUNCG indoor scene dataset demonstrate that our approach yields more realistic images compared to other state-of-the-art approaches. Furthermore, networks trained on our generated ``real'' images predict more accurate depth and normals than domain adaptation approaches, suggesting that improving the visual realism of the images can be more effective than imposing task-specific losses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1