基于脑机接口的运动图像脑电信号边缘时间相干性分析

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.0140888
Md. Sujan Ali, Jannatul Ferdous
{"title":"基于脑机接口的运动图像脑电信号边缘时间相干性分析","authors":"Md. Sujan Ali, Jannatul Ferdous","doi":"10.14569/ijacsa.2023.0140888","DOIUrl":null,"url":null,"abstract":"—The synchronization of neural activity in the human brain has great significance for coordinating its various cognitive functions. It changes throughout time and in response to frequency. The activity is measured in terms of brain signals, like an electroencephalogram (EEG). The time-frequency (TF) synchronization among several EEG channels is measured in this research using an efficient approach. Most frequently, the windowed Fourier transforms-short-time Fourier transform (STFT), as well as wavelet transform (WT), and are used to measure the TF coherence. The information provided by these model-based methods in the TF domain is insufficient. The proposed synchro squeezing transform (SST)-based TF representation is a data-adaptive approach for resolving the problem of the traditional one. It enables more perfect estimation and better tracking of TF components. The SST generates a clearly defined TF depiction because of its data flexibility and frequency reassignment capabilities. Furthermore, a non-identical smoothing operator is used to smooth the TF coherence, which enhances the statistical consistency of neural synchronization. The experiment is run using both simulated and actual EEG data. The outcomes show that the suggested SST-dependent system performs significantly better than the previously mentioned traditional approaches. As a result, the coherences dependent on the suggested approach clearly distinguish between various forms of motor imagery movement. The TF coherence can be used to measure the interdependencies of neural activities.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motor Imagery EEG Signals Marginal Time Coherence Analysis for Brain-Computer Interface\",\"authors\":\"Md. Sujan Ali, Jannatul Ferdous\",\"doi\":\"10.14569/ijacsa.2023.0140888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—The synchronization of neural activity in the human brain has great significance for coordinating its various cognitive functions. It changes throughout time and in response to frequency. The activity is measured in terms of brain signals, like an electroencephalogram (EEG). The time-frequency (TF) synchronization among several EEG channels is measured in this research using an efficient approach. Most frequently, the windowed Fourier transforms-short-time Fourier transform (STFT), as well as wavelet transform (WT), and are used to measure the TF coherence. The information provided by these model-based methods in the TF domain is insufficient. The proposed synchro squeezing transform (SST)-based TF representation is a data-adaptive approach for resolving the problem of the traditional one. It enables more perfect estimation and better tracking of TF components. The SST generates a clearly defined TF depiction because of its data flexibility and frequency reassignment capabilities. Furthermore, a non-identical smoothing operator is used to smooth the TF coherence, which enhances the statistical consistency of neural synchronization. The experiment is run using both simulated and actual EEG data. The outcomes show that the suggested SST-dependent system performs significantly better than the previously mentioned traditional approaches. As a result, the coherences dependent on the suggested approach clearly distinguish between various forms of motor imagery movement. The TF coherence can be used to measure the interdependencies of neural activities.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

人脑神经活动的同步性对协调大脑的各种认知功能具有重要意义。它随时间和频率变化。这种活动是根据大脑信号来测量的,就像脑电图(EEG)一样。本研究采用一种有效的方法测量了多个脑电信号通道间的时频同步。通常,加窗傅里叶变换-短时傅里叶变换(STFT)和小波变换(WT)被用于测量TF相干性。这些基于模型的方法在TF领域提供的信息不足。本文提出的基于同步压缩变换(SST)的TF表示方法是一种数据自适应的方法,解决了传统TF表示方法存在的问题。它可以更完美地估计和更好地跟踪TF分量。由于海表温度具有数据灵活性和频率重分配能力,因此产生了明确定义的TF描述。此外,采用非同构平滑算子对TF相干进行平滑处理,增强了神经同步的统计一致性。实验采用模拟和实际的脑电图数据进行。结果表明,所提出的依赖海温的系统的性能明显优于之前提到的传统方法。因此,基于建议方法的连贯性清楚地区分了各种形式的运动意象运动。TF相干性可用于测量神经活动的相互依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motor Imagery EEG Signals Marginal Time Coherence Analysis for Brain-Computer Interface
—The synchronization of neural activity in the human brain has great significance for coordinating its various cognitive functions. It changes throughout time and in response to frequency. The activity is measured in terms of brain signals, like an electroencephalogram (EEG). The time-frequency (TF) synchronization among several EEG channels is measured in this research using an efficient approach. Most frequently, the windowed Fourier transforms-short-time Fourier transform (STFT), as well as wavelet transform (WT), and are used to measure the TF coherence. The information provided by these model-based methods in the TF domain is insufficient. The proposed synchro squeezing transform (SST)-based TF representation is a data-adaptive approach for resolving the problem of the traditional one. It enables more perfect estimation and better tracking of TF components. The SST generates a clearly defined TF depiction because of its data flexibility and frequency reassignment capabilities. Furthermore, a non-identical smoothing operator is used to smooth the TF coherence, which enhances the statistical consistency of neural synchronization. The experiment is run using both simulated and actual EEG data. The outcomes show that the suggested SST-dependent system performs significantly better than the previously mentioned traditional approaches. As a result, the coherences dependent on the suggested approach clearly distinguish between various forms of motor imagery movement. The TF coherence can be used to measure the interdependencies of neural activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1