{"title":"地震冲击模拟中线性粘弹性模型的冲击刚度实验评价","authors":"Yazan M. Jaradat, H. Far","doi":"10.28991/cej-2023-09-06-01","DOIUrl":null,"url":null,"abstract":"Pounding between adjacent structures occurs when the separating distance within the two buildings is inadequate to contain the movement between them during an earthquake event. Seismic pounding can lead to significant harm or even the destruction of neighbouring structures. In creating a model for structural response, impact stiffness is considered as a critical factor in calculating the impact force throughout the collision within adjacent structures. It is important to derive realistic stiffness values when performing a numerical simulation of pounding forces within abutting structures to attain valid results. The objective of this study is to ascertain the impact stiffness within the linear viscoelastic contact model, using data obtained from shaking table experiments of pounding between neighboring five-storey and 15-storey single-bay model of steel-frame. The steel models were subjected to scaled ground acceleration records, two far-field and two near-field. The study’s findings indicate that there is a significant discrepancy between the theoretical impact parameters and the measured experimental value because the assumptions made to derive the theoretical formulas do not align with the actual impact conditions. The accuracy and precision of the experimental formula adopted in this study have been validated in comparison with the numerical results. Doi: 10.28991/CEJ-2023-09-06-01 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact Stiffness of Linear Viscoelastic Model for Seismic Pounding Simulation: An Experimental Evaluation\",\"authors\":\"Yazan M. Jaradat, H. Far\",\"doi\":\"10.28991/cej-2023-09-06-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pounding between adjacent structures occurs when the separating distance within the two buildings is inadequate to contain the movement between them during an earthquake event. Seismic pounding can lead to significant harm or even the destruction of neighbouring structures. In creating a model for structural response, impact stiffness is considered as a critical factor in calculating the impact force throughout the collision within adjacent structures. It is important to derive realistic stiffness values when performing a numerical simulation of pounding forces within abutting structures to attain valid results. The objective of this study is to ascertain the impact stiffness within the linear viscoelastic contact model, using data obtained from shaking table experiments of pounding between neighboring five-storey and 15-storey single-bay model of steel-frame. The steel models were subjected to scaled ground acceleration records, two far-field and two near-field. The study’s findings indicate that there is a significant discrepancy between the theoretical impact parameters and the measured experimental value because the assumptions made to derive the theoretical formulas do not align with the actual impact conditions. The accuracy and precision of the experimental formula adopted in this study have been validated in comparison with the numerical results. Doi: 10.28991/CEJ-2023-09-06-01 Full Text: PDF\",\"PeriodicalId\":53612,\"journal\":{\"name\":\"Open Civil Engineering Journal\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-06-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-06-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Impact Stiffness of Linear Viscoelastic Model for Seismic Pounding Simulation: An Experimental Evaluation
Pounding between adjacent structures occurs when the separating distance within the two buildings is inadequate to contain the movement between them during an earthquake event. Seismic pounding can lead to significant harm or even the destruction of neighbouring structures. In creating a model for structural response, impact stiffness is considered as a critical factor in calculating the impact force throughout the collision within adjacent structures. It is important to derive realistic stiffness values when performing a numerical simulation of pounding forces within abutting structures to attain valid results. The objective of this study is to ascertain the impact stiffness within the linear viscoelastic contact model, using data obtained from shaking table experiments of pounding between neighboring five-storey and 15-storey single-bay model of steel-frame. The steel models were subjected to scaled ground acceleration records, two far-field and two near-field. The study’s findings indicate that there is a significant discrepancy between the theoretical impact parameters and the measured experimental value because the assumptions made to derive the theoretical formulas do not align with the actual impact conditions. The accuracy and precision of the experimental formula adopted in this study have been validated in comparison with the numerical results. Doi: 10.28991/CEJ-2023-09-06-01 Full Text: PDF
期刊介绍:
The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.