基于两两比较的图像美学评价——分数回归、二元分类和个性化的统一方法

Jun-Tae Lee, Chang-Su Kim
{"title":"基于两两比较的图像美学评价——分数回归、二元分类和个性化的统一方法","authors":"Jun-Tae Lee, Chang-Su Kim","doi":"10.1109/ICCV.2019.00128","DOIUrl":null,"url":null,"abstract":"We propose a unified approach to three tasks of aesthetic score regression, binary aesthetic classification, and personalized aesthetics. First, we develop a comparator to estimate the ratio of aesthetic scores for two images. Then, we construct a pairwise comparison matrix for multiple reference images and an input image, and predict the aesthetic score of the input via the eigenvalue decomposition of the matrix. By varying the reference images, the proposed algorithm can be used for binary aesthetic classification and personalized aesthetics, as well as generic score regression. Experimental results demonstrate that the proposed unified algorithm provides the state-of-the-art performances in all three tasks of image aesthetics.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"80 1","pages":"1191-1200"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Image Aesthetic Assessment Based on Pairwise Comparison ­ A Unified Approach to Score Regression, Binary Classification, and Personalization\",\"authors\":\"Jun-Tae Lee, Chang-Su Kim\",\"doi\":\"10.1109/ICCV.2019.00128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a unified approach to three tasks of aesthetic score regression, binary aesthetic classification, and personalized aesthetics. First, we develop a comparator to estimate the ratio of aesthetic scores for two images. Then, we construct a pairwise comparison matrix for multiple reference images and an input image, and predict the aesthetic score of the input via the eigenvalue decomposition of the matrix. By varying the reference images, the proposed algorithm can be used for binary aesthetic classification and personalized aesthetics, as well as generic score regression. Experimental results demonstrate that the proposed unified algorithm provides the state-of-the-art performances in all three tasks of image aesthetics.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"80 1\",\"pages\":\"1191-1200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们提出了统一的方法来完成美学评分回归、二元美学分类和个性化美学三项任务。首先,我们开发了一个比较器来估计两个图像的美学分数的比率。然后,我们构建了多个参考图像和一个输入图像的两两比较矩阵,并通过矩阵的特征值分解来预测输入图像的审美评分。通过改变参考图像,该算法可以用于二元美学分类和个性化美学,也可以用于通用评分回归。实验结果表明,所提出的统一算法在图像美学的三个任务中都提供了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Aesthetic Assessment Based on Pairwise Comparison ­ A Unified Approach to Score Regression, Binary Classification, and Personalization
We propose a unified approach to three tasks of aesthetic score regression, binary aesthetic classification, and personalized aesthetics. First, we develop a comparator to estimate the ratio of aesthetic scores for two images. Then, we construct a pairwise comparison matrix for multiple reference images and an input image, and predict the aesthetic score of the input via the eigenvalue decomposition of the matrix. By varying the reference images, the proposed algorithm can be used for binary aesthetic classification and personalized aesthetics, as well as generic score regression. Experimental results demonstrate that the proposed unified algorithm provides the state-of-the-art performances in all three tasks of image aesthetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1