Si Sun, Xuandong Zhang, Li Dong, Lu Fan, Xiaojing Liu
{"title":"基于复合神经网络的绿色技术创新对企业财务信息管理的影响研究","authors":"Si Sun, Xuandong Zhang, Li Dong, Lu Fan, Xiaojing Liu","doi":"10.4018/joeuc.326519","DOIUrl":null,"url":null,"abstract":"To enhance the early warning level of financial risks in enterprises, mitigate the financial risks arising from diverse adversities, and drive green technological innovation and sustainable development, this study proposes a financial risk prediction model (MS-BGRU) that amalgamates multi-scale convolution and two-way GRU. Firstly, a multi-scale feature extraction module is devised that assimilates financial information from various scales by leveraging hole convolution with distinct expansion rates. This assimilated information is then fused to obtain richer context information. Secondly, the BGRU network is employed to discern the sequence characteristics and time information of financial indicators. The empirical results showcase that the model proposed in this paper exhibits a high identification accuracy, surging up to 98.03%, which surpasses other benchmark models. The model can accurately prophesize the financial risk of enterprises and offer guidance to management decision-makers in averting financial risk.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"29 1","pages":"1-13"},"PeriodicalIF":3.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Impact of Green Technology Innovation on Enterprise Financial Information Management Based on Compound Neural Network\",\"authors\":\"Si Sun, Xuandong Zhang, Li Dong, Lu Fan, Xiaojing Liu\",\"doi\":\"10.4018/joeuc.326519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the early warning level of financial risks in enterprises, mitigate the financial risks arising from diverse adversities, and drive green technological innovation and sustainable development, this study proposes a financial risk prediction model (MS-BGRU) that amalgamates multi-scale convolution and two-way GRU. Firstly, a multi-scale feature extraction module is devised that assimilates financial information from various scales by leveraging hole convolution with distinct expansion rates. This assimilated information is then fused to obtain richer context information. Secondly, the BGRU network is employed to discern the sequence characteristics and time information of financial indicators. The empirical results showcase that the model proposed in this paper exhibits a high identification accuracy, surging up to 98.03%, which surpasses other benchmark models. The model can accurately prophesize the financial risk of enterprises and offer guidance to management decision-makers in averting financial risk.\",\"PeriodicalId\":49029,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"29 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.326519\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.326519","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Research on the Impact of Green Technology Innovation on Enterprise Financial Information Management Based on Compound Neural Network
To enhance the early warning level of financial risks in enterprises, mitigate the financial risks arising from diverse adversities, and drive green technological innovation and sustainable development, this study proposes a financial risk prediction model (MS-BGRU) that amalgamates multi-scale convolution and two-way GRU. Firstly, a multi-scale feature extraction module is devised that assimilates financial information from various scales by leveraging hole convolution with distinct expansion rates. This assimilated information is then fused to obtain richer context information. Secondly, the BGRU network is employed to discern the sequence characteristics and time information of financial indicators. The empirical results showcase that the model proposed in this paper exhibits a high identification accuracy, surging up to 98.03%, which surpasses other benchmark models. The model can accurately prophesize the financial risk of enterprises and offer guidance to management decision-makers in averting financial risk.
期刊介绍:
The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.