预测银行柜员队列的等待时间溢出

Ricardo Silva Carvalho, Rommel N. Carvalho, G. N. Ramos, R. Mourão
{"title":"预测银行柜员队列的等待时间溢出","authors":"Ricardo Silva Carvalho, Rommel N. Carvalho, G. N. Ramos, R. Mourão","doi":"10.1109/ICMLA.2017.00-51","DOIUrl":null,"url":null,"abstract":"This study proposes a predictive model to detect the delay in bank teller queues. Since there are penalties and fines applied to the branches that leave their clients waiting for a long time, detecting these cases as early as possible is essential. Four models were tested: one using a Queuing Theory's formula and the other three using Data Mining algorithms -- Deep Learning (DL), Gradient Boost Machine (GBM), and Random Forest (RF). The results indicated the GBM model as the most efficient, with an accuracy of 97% and a F1-measure of 75%.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"60 1","pages":"842-847"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Predicting Waiting Time Overflow on Bank Teller Queues\",\"authors\":\"Ricardo Silva Carvalho, Rommel N. Carvalho, G. N. Ramos, R. Mourão\",\"doi\":\"10.1109/ICMLA.2017.00-51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a predictive model to detect the delay in bank teller queues. Since there are penalties and fines applied to the branches that leave their clients waiting for a long time, detecting these cases as early as possible is essential. Four models were tested: one using a Queuing Theory's formula and the other three using Data Mining algorithms -- Deep Learning (DL), Gradient Boost Machine (GBM), and Random Forest (RF). The results indicated the GBM model as the most efficient, with an accuracy of 97% and a F1-measure of 75%.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"60 1\",\"pages\":\"842-847\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.00-51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本研究提出一种预测模型来侦测银行柜员排队的延迟。因为让客户长时间等待的分行会受到处罚和罚款,所以尽早发现这些案件是至关重要的。测试了四个模型:一个使用排队论公式,另外三个使用数据挖掘算法——深度学习(DL)、梯度增强机(GBM)和随机森林(RF)。结果表明,GBM模型是最有效的,准确率为97%,f1测量值为75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Waiting Time Overflow on Bank Teller Queues
This study proposes a predictive model to detect the delay in bank teller queues. Since there are penalties and fines applied to the branches that leave their clients waiting for a long time, detecting these cases as early as possible is essential. Four models were tested: one using a Queuing Theory's formula and the other three using Data Mining algorithms -- Deep Learning (DL), Gradient Boost Machine (GBM), and Random Forest (RF). The results indicated the GBM model as the most efficient, with an accuracy of 97% and a F1-measure of 75%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1