伽马混合框架下ROC曲线下面积的估计

Arunima S. Kannan, R. V. Vardhan
{"title":"伽马混合框架下ROC曲线下面积的估计","authors":"Arunima S. Kannan, R. V. Vardhan","doi":"10.1080/23737484.2022.2121947","DOIUrl":null,"url":null,"abstract":"Abstract Receiver operating characteristic (ROC) curve is one of the well-known classification tools. There are several bi-distributional ROC models in the literature, which can be applied only when there is a prior knowledge on the class/status of the subject. If the predefined status of the subject is not known, then we need to administer a statistical methodology to identify the homogeneous components within it. Once this is done, modeling of ROC can be made, and here it is assumed that the data underlie non-normal distribution. In this paper, the need for handling non-normal data in the framework of mixture model is discussed and demonstrated using a real data set and simulation studies. It is shown that, the proposed mixGamma ROC model replaces the existing ROC models when the data is of non-normal and multi-mode.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"61 1","pages":"714 - 727"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of area under the ROC curve in the framework of gamma mixtures\",\"authors\":\"Arunima S. Kannan, R. V. Vardhan\",\"doi\":\"10.1080/23737484.2022.2121947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Receiver operating characteristic (ROC) curve is one of the well-known classification tools. There are several bi-distributional ROC models in the literature, which can be applied only when there is a prior knowledge on the class/status of the subject. If the predefined status of the subject is not known, then we need to administer a statistical methodology to identify the homogeneous components within it. Once this is done, modeling of ROC can be made, and here it is assumed that the data underlie non-normal distribution. In this paper, the need for handling non-normal data in the framework of mixture model is discussed and demonstrated using a real data set and simulation studies. It is shown that, the proposed mixGamma ROC model replaces the existing ROC models when the data is of non-normal and multi-mode.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"61 1\",\"pages\":\"714 - 727\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2022.2121947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2022.2121947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

接收者工作特征曲线(Receiver operating characteristic, ROC)是公认的分类工具之一。文献中有几个双分布ROC模型,只有在对受试者的类别/状态有先验知识时才能应用。如果不知道主题的预定义状态,那么我们需要管理一种统计方法来识别其中的同类组件。一旦完成,就可以进行ROC建模,这里假设数据是非正态分布。本文讨论了在混合模型框架下处理非正态数据的必要性,并通过实际数据集和仿真研究进行了论证。结果表明,当数据是非正态和多模态时,所提出的mixGamma ROC模型可以替代现有的ROC模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of area under the ROC curve in the framework of gamma mixtures
Abstract Receiver operating characteristic (ROC) curve is one of the well-known classification tools. There are several bi-distributional ROC models in the literature, which can be applied only when there is a prior knowledge on the class/status of the subject. If the predefined status of the subject is not known, then we need to administer a statistical methodology to identify the homogeneous components within it. Once this is done, modeling of ROC can be made, and here it is assumed that the data underlie non-normal distribution. In this paper, the need for handling non-normal data in the framework of mixture model is discussed and demonstrated using a real data set and simulation studies. It is shown that, the proposed mixGamma ROC model replaces the existing ROC models when the data is of non-normal and multi-mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1