R. Kobayashi, M. Noda, M. Sawamura, H. Yamakado, Masayuki Sohgawa
{"title":"基于实时振动诱导转换方法的磷脂脂质体-固定化悬臂式生物传感器检测帕金森病α-突触核蛋白生物标志物分子","authors":"R. Kobayashi, M. Noda, M. Sawamura, H. Yamakado, Masayuki Sohgawa","doi":"10.1109/SENSORS43011.2019.8956615","DOIUrl":null,"url":null,"abstract":"We newly applied real-time quaking-induced conversion (RT-QuIC) method for phospholipid liposome-immobilized cantilever sensor in order to obtain a trace amount of chronological behavior of α−synuclein (aSyn) as causative agent for Parkinson Disease. Our goal is to detect aggregated, not a monomeric, forms of aSyn in its initial stage, as it is most toxic in patient’s cerebrospinal fluid (CSF). Especially, by introducing similar processes of the RT-QuIC on a microscale cantilever surface, pM order aSyn fibril was detected, further indicating several hundreds of fM detection in the cantilever biosensor system that is fluorescent label-free technique.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Detection of Biomarker Molecule of α-synuclein for Parkinson Disease by Phospholipid Liposome-Immobilized Cantilever Biosensor Using Real-Time Quaking-Induced Conversion Method\",\"authors\":\"R. Kobayashi, M. Noda, M. Sawamura, H. Yamakado, Masayuki Sohgawa\",\"doi\":\"10.1109/SENSORS43011.2019.8956615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We newly applied real-time quaking-induced conversion (RT-QuIC) method for phospholipid liposome-immobilized cantilever sensor in order to obtain a trace amount of chronological behavior of α−synuclein (aSyn) as causative agent for Parkinson Disease. Our goal is to detect aggregated, not a monomeric, forms of aSyn in its initial stage, as it is most toxic in patient’s cerebrospinal fluid (CSF). Especially, by introducing similar processes of the RT-QuIC on a microscale cantilever surface, pM order aSyn fibril was detected, further indicating several hundreds of fM detection in the cantilever biosensor system that is fluorescent label-free technique.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":\"1 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Detection of Biomarker Molecule of α-synuclein for Parkinson Disease by Phospholipid Liposome-Immobilized Cantilever Biosensor Using Real-Time Quaking-Induced Conversion Method
We newly applied real-time quaking-induced conversion (RT-QuIC) method for phospholipid liposome-immobilized cantilever sensor in order to obtain a trace amount of chronological behavior of α−synuclein (aSyn) as causative agent for Parkinson Disease. Our goal is to detect aggregated, not a monomeric, forms of aSyn in its initial stage, as it is most toxic in patient’s cerebrospinal fluid (CSF). Especially, by introducing similar processes of the RT-QuIC on a microscale cantilever surface, pM order aSyn fibril was detected, further indicating several hundreds of fM detection in the cantilever biosensor system that is fluorescent label-free technique.