一种分区随机离散数据的分解高维模型表示

M. Alper Tunga, Metin Demiralp
{"title":"一种分区随机离散数据的分解高维模型表示","authors":"M. Alper Tunga,&nbsp;Metin Demiralp","doi":"10.1002/anac.200310020","DOIUrl":null,"url":null,"abstract":"<p>The main purpose of this work is to obtain the general structure of a product type of multivariate function when the values of the function are given randomly at the nodes of a hyperprism. When the dimensionality of multivariate interpolation and the number of the data sets increase unboundedly, many problems can be encountered in the standard numerical methods. Factorized High Dimensional Model Representation (FHDMR) is used to obtain the general structure of this given multivariate function. The components of FHDMR are determined by using the components of the Generalized High Dimensional Model Representation (GHDMR).The given random discrete data is partitioned by GHDMR method. This partitioned data produces a structure for the multivariate function by using single variable Lagrange interpolation formula including only the constant term and the univariate terms of the GHDMR components. Finally, a general structure is obtained via FHMDR by using these components. By this way, the multidimensionality of a multivariate interpolation is approximated by lower dimensional interpolations like univariate ones. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"231-241"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310020","citationCount":"41","resultStr":"{\"title\":\"A Factorized High Dimensional Model Representation on the Partitioned Random Discrete Data\",\"authors\":\"M. Alper Tunga,&nbsp;Metin Demiralp\",\"doi\":\"10.1002/anac.200310020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main purpose of this work is to obtain the general structure of a product type of multivariate function when the values of the function are given randomly at the nodes of a hyperprism. When the dimensionality of multivariate interpolation and the number of the data sets increase unboundedly, many problems can be encountered in the standard numerical methods. Factorized High Dimensional Model Representation (FHDMR) is used to obtain the general structure of this given multivariate function. The components of FHDMR are determined by using the components of the Generalized High Dimensional Model Representation (GHDMR).The given random discrete data is partitioned by GHDMR method. This partitioned data produces a structure for the multivariate function by using single variable Lagrange interpolation formula including only the constant term and the univariate terms of the GHDMR components. Finally, a general structure is obtained via FHMDR by using these components. By this way, the multidimensionality of a multivariate interpolation is approximated by lower dimensional interpolations like univariate ones. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"231-241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200310020\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

本文的主要目的是得到多元积型函数在超棱镜节点处随机给定值时的一般结构。当多元插值的维数和数据集数量无限增加时,标准数值方法会遇到许多问题。采用分解高维模型表示法(FHDMR)得到了给定多元函数的一般结构。利用广义高维模型表示(GHDMR)的分量来确定FHDMR的分量。用GHDMR方法对给定的随机离散数据进行分割。通过使用单变量拉格朗日插值公式(仅包含GHDMR分量的常数项和单变量项),该分割数据产生了多元函数的结构。最后,利用这些元件通过FHMDR得到一个总体结构。通过这种方法,多元插值的多维度可以用像单变量插值那样的低维插值来近似。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Factorized High Dimensional Model Representation on the Partitioned Random Discrete Data

The main purpose of this work is to obtain the general structure of a product type of multivariate function when the values of the function are given randomly at the nodes of a hyperprism. When the dimensionality of multivariate interpolation and the number of the data sets increase unboundedly, many problems can be encountered in the standard numerical methods. Factorized High Dimensional Model Representation (FHDMR) is used to obtain the general structure of this given multivariate function. The components of FHDMR are determined by using the components of the Generalized High Dimensional Model Representation (GHDMR).The given random discrete data is partitioned by GHDMR method. This partitioned data produces a structure for the multivariate function by using single variable Lagrange interpolation formula including only the constant term and the univariate terms of the GHDMR components. Finally, a general structure is obtained via FHMDR by using these components. By this way, the multidimensionality of a multivariate interpolation is approximated by lower dimensional interpolations like univariate ones. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of the Greatest Common Divisor of many polynomials using hybrid computations performed by the ERES method Analysis and Application of an Orthogonal Nodal Basis on Triangles for Discontinuous Spectral Element Methods Analytic Evaluation of Collocation Integrals for the Radiosity Equation A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems Solving Hyperbolic PDEs in MATLAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1