{"title":"高光谱遥感在增强作物制图中的作用:不同监督分割算法的比较","authors":"M. Awad","doi":"10.35603/EPS2019/ISSUE1.03","DOIUrl":null,"url":null,"abstract":"In agriculture sector there is need for cheap, fast, and accurate data and technologies to help decision makers to find solutions for many agricultural problems. Many solutions depend significantly on the accuracy and efficiency of the crop mapping and crop yield estimation processes. High resolution spectral remote sensing can improve substantially crop mapping by reducing similarities between different crop types which has similar ecological conditions. This paper presents a new approach of combining a new tool, hyperspectral images and technologies to enhance crop mapping. The tool includes spectral signatures database for the major crops in the Eastern Mediterranean Basin and other important metadata and processing functions. To prove the efficiency of the new approach, major crops such as “winter wheat” and “spring potato” are mapped using the spectral signatures database in the new tool, three different supervised algorithms, and CHRIS-Proba hyperspectral satellite images. The evaluation of the results showed that deploying different hyperspectral data and technologies can improve crop mapping. The improvements can be noticed with the increase of the accuracy to more than 86% with the use of the supervised algorithm Spectral Angle Mapper (SAM).","PeriodicalId":22116,"journal":{"name":"SWS Journal of EARTH AND PLANETARY SCIENCES","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HYPERSPECTRAL REMOTE SENSING ROLE IN ENHANCING CROP MAPPING: A COMPARISON BETWEEN DIFFERENT SUPERVISED SEGMENTATION ALGORITHMS\",\"authors\":\"M. Awad\",\"doi\":\"10.35603/EPS2019/ISSUE1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In agriculture sector there is need for cheap, fast, and accurate data and technologies to help decision makers to find solutions for many agricultural problems. Many solutions depend significantly on the accuracy and efficiency of the crop mapping and crop yield estimation processes. High resolution spectral remote sensing can improve substantially crop mapping by reducing similarities between different crop types which has similar ecological conditions. This paper presents a new approach of combining a new tool, hyperspectral images and technologies to enhance crop mapping. The tool includes spectral signatures database for the major crops in the Eastern Mediterranean Basin and other important metadata and processing functions. To prove the efficiency of the new approach, major crops such as “winter wheat” and “spring potato” are mapped using the spectral signatures database in the new tool, three different supervised algorithms, and CHRIS-Proba hyperspectral satellite images. The evaluation of the results showed that deploying different hyperspectral data and technologies can improve crop mapping. The improvements can be noticed with the increase of the accuracy to more than 86% with the use of the supervised algorithm Spectral Angle Mapper (SAM).\",\"PeriodicalId\":22116,\"journal\":{\"name\":\"SWS Journal of EARTH AND PLANETARY SCIENCES\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SWS Journal of EARTH AND PLANETARY SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35603/EPS2019/ISSUE1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SWS Journal of EARTH AND PLANETARY SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35603/EPS2019/ISSUE1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HYPERSPECTRAL REMOTE SENSING ROLE IN ENHANCING CROP MAPPING: A COMPARISON BETWEEN DIFFERENT SUPERVISED SEGMENTATION ALGORITHMS
In agriculture sector there is need for cheap, fast, and accurate data and technologies to help decision makers to find solutions for many agricultural problems. Many solutions depend significantly on the accuracy and efficiency of the crop mapping and crop yield estimation processes. High resolution spectral remote sensing can improve substantially crop mapping by reducing similarities between different crop types which has similar ecological conditions. This paper presents a new approach of combining a new tool, hyperspectral images and technologies to enhance crop mapping. The tool includes spectral signatures database for the major crops in the Eastern Mediterranean Basin and other important metadata and processing functions. To prove the efficiency of the new approach, major crops such as “winter wheat” and “spring potato” are mapped using the spectral signatures database in the new tool, three different supervised algorithms, and CHRIS-Proba hyperspectral satellite images. The evaluation of the results showed that deploying different hyperspectral data and technologies can improve crop mapping. The improvements can be noticed with the increase of the accuracy to more than 86% with the use of the supervised algorithm Spectral Angle Mapper (SAM).