考虑需求响应的两阶段数据驱动多能源管理

Pengfei Zhao, C. Gu, Zhidong Cao, Yue Xiang, Xiaohe Yan, Da Huo
{"title":"考虑需求响应的两阶段数据驱动多能源管理","authors":"Pengfei Zhao, C. Gu, Zhidong Cao, Yue Xiang, Xiaohe Yan, Da Huo","doi":"10.1145/3410530.3414587","DOIUrl":null,"url":null,"abstract":"This paper proposes an innovative two-stage data-driven optimization framework for a multi-energy system. Enormous energy conversion technologies are incorporated in the system to enhance the overall energy utilization efficiency, i.e., combined heat and power, power-to-gas, gas furnace, and ground source heat pump. Furthermore, a demand response program is adopted for stimulating the load shift of customers. Accordingly, both the economic performance and system reliability can be improved. The endogenous solar generation brings about high uncertainty and variability, which affects the decision making of the system operator. Therefore, a two-stage data-driven distributionally robust optimization (TSDRO) method is utilized to capture the uncertainty. A tractable semidefinite programming reformulation is obtained based on the duality theory. Case studies are implemented to demonstrate the effectiveness of applying the TSDRO on energy management.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A two-stage data-driven multi-energy management considering demand response\",\"authors\":\"Pengfei Zhao, C. Gu, Zhidong Cao, Yue Xiang, Xiaohe Yan, Da Huo\",\"doi\":\"10.1145/3410530.3414587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an innovative two-stage data-driven optimization framework for a multi-energy system. Enormous energy conversion technologies are incorporated in the system to enhance the overall energy utilization efficiency, i.e., combined heat and power, power-to-gas, gas furnace, and ground source heat pump. Furthermore, a demand response program is adopted for stimulating the load shift of customers. Accordingly, both the economic performance and system reliability can be improved. The endogenous solar generation brings about high uncertainty and variability, which affects the decision making of the system operator. Therefore, a two-stage data-driven distributionally robust optimization (TSDRO) method is utilized to capture the uncertainty. A tractable semidefinite programming reformulation is obtained based on the duality theory. Case studies are implemented to demonstrate the effectiveness of applying the TSDRO on energy management.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种创新的多能源系统两阶段数据驱动优化框架。系统采用热电联产、电改气、煤气炉、地源热泵等大量能量转换技术,提高能源综合利用效率。此外,采用需求响应方案来刺激用户的负荷转移。从而提高系统的经济性能和可靠性。内源太阳能发电具有较高的不确定性和可变性,影响系统操作者的决策。因此,采用两阶段数据驱动分布鲁棒优化(TSDRO)方法来捕获不确定性。基于对偶理论,得到了一种易于处理的半定规划重表述。案例研究表明,TSDRO应用于能源管理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A two-stage data-driven multi-energy management considering demand response
This paper proposes an innovative two-stage data-driven optimization framework for a multi-energy system. Enormous energy conversion technologies are incorporated in the system to enhance the overall energy utilization efficiency, i.e., combined heat and power, power-to-gas, gas furnace, and ground source heat pump. Furthermore, a demand response program is adopted for stimulating the load shift of customers. Accordingly, both the economic performance and system reliability can be improved. The endogenous solar generation brings about high uncertainty and variability, which affects the decision making of the system operator. Therefore, a two-stage data-driven distributionally robust optimization (TSDRO) method is utilized to capture the uncertainty. A tractable semidefinite programming reformulation is obtained based on the duality theory. Case studies are implemented to demonstrate the effectiveness of applying the TSDRO on energy management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using gamification to create and label photos that are challenging for computer vision and people Pose evaluation for dance learning application using joint position and angular similarity SParking: a win-win data-driven contract parking sharing system HeadgearX Blink rate variability: a marker of sustained attention during a visual task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1