多智能体环境下自动处理和数据挖掘场景的开发

I. A. Pisarev, E. E. Kotova, A. S. Pisarev, N. Stash
{"title":"多智能体环境下自动处理和数据挖掘场景的开发","authors":"I. A. Pisarev, E. E. Kotova, A. S. Pisarev, N. Stash","doi":"10.1109/EICONRUS.2019.8656816","DOIUrl":null,"url":null,"abstract":"The article proposes tools for the creation and execution of scenarios processing and data mining in the multi-agent environment. The hybrid database of information resources is developed, the database of methods and models, ontologies and tools for processing and extracting data in the web environment is also proposed. Metadata describes machine learning methods related to regression analysis and classification of information resources based on Bayesian theorem, decision trees, support vector machines, convolutional neural networks, and other. Examples of research scenarios, including the processing of video images and signals, the classification and identification of models of object trajectories are given. The task of automated data processing and analysis is considered with use of the example of multidimensional sonar monitoring. Automatic data analysis is implemented within the network software environment based on Semantic Web standards. The results of the work can be applied in research and in the field of students training.","PeriodicalId":6748,"journal":{"name":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"1 1","pages":"630-633"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of Scenarios for Automatic Processing and Data Mining in a Multi-Agent Environment\",\"authors\":\"I. A. Pisarev, E. E. Kotova, A. S. Pisarev, N. Stash\",\"doi\":\"10.1109/EICONRUS.2019.8656816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article proposes tools for the creation and execution of scenarios processing and data mining in the multi-agent environment. The hybrid database of information resources is developed, the database of methods and models, ontologies and tools for processing and extracting data in the web environment is also proposed. Metadata describes machine learning methods related to regression analysis and classification of information resources based on Bayesian theorem, decision trees, support vector machines, convolutional neural networks, and other. Examples of research scenarios, including the processing of video images and signals, the classification and identification of models of object trajectories are given. The task of automated data processing and analysis is considered with use of the example of multidimensional sonar monitoring. Automatic data analysis is implemented within the network software environment based on Semantic Web standards. The results of the work can be applied in research and in the field of students training.\",\"PeriodicalId\":6748,\"journal\":{\"name\":\"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"volume\":\"1 1\",\"pages\":\"630-633\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EICONRUS.2019.8656816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2019.8656816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了在多代理环境中创建和执行场景处理和数据挖掘的工具。建立了信息资源的混合数据库,提出了web环境下数据处理和提取的方法和模型、本体和工具数据库。元数据描述了基于贝叶斯定理、决策树、支持向量机、卷积神经网络等的与回归分析和信息资源分类相关的机器学习方法。给出了研究场景的实例,包括视频图像和信号的处理、目标轨迹模型的分类和识别。以多维声纳监测为例,讨论了数据自动处理和分析的任务。在基于语义Web标准的网络软件环境中实现自动数据分析。研究结果可应用于科研和学生培养领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Scenarios for Automatic Processing and Data Mining in a Multi-Agent Environment
The article proposes tools for the creation and execution of scenarios processing and data mining in the multi-agent environment. The hybrid database of information resources is developed, the database of methods and models, ontologies and tools for processing and extracting data in the web environment is also proposed. Metadata describes machine learning methods related to regression analysis and classification of information resources based on Bayesian theorem, decision trees, support vector machines, convolutional neural networks, and other. Examples of research scenarios, including the processing of video images and signals, the classification and identification of models of object trajectories are given. The task of automated data processing and analysis is considered with use of the example of multidimensional sonar monitoring. Automatic data analysis is implemented within the network software environment based on Semantic Web standards. The results of the work can be applied in research and in the field of students training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Quality of Indonesian Scientific Articles and Its Neighboring Countries Study of Electrodynamic Levitation Force in a Traction Linear Induction Motor Mathematical Modeling of the Fabry-Perot Interferometer Based on Silicon Plates for Application in Microfluid Sensor Devices The Development Of The Information-Logical Model Of Image Recognition By The Invariant Characteristics Using Statistical Analysis to Fine-Tune the Results of Knapsack-Based Computational Platform Benchmarking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1