鼠李糖乳杆菌细菌素对铜绿假单胞菌脂多糖的影响

Hafizeh Haghighatafshar, R. Talebi, A. Tukmechi
{"title":"鼠李糖乳杆菌细菌素对铜绿假单胞菌脂多糖的影响","authors":"Hafizeh Haghighatafshar, R. Talebi, A. Tukmechi","doi":"10.34172/ajcmi.2021.09","DOIUrl":null,"url":null,"abstract":"Background: Bacteriocins are heterogeneous inhibitory substances that could affect the bacteria belonging to the same genus. Both gram-positive and gram-negative bacteria produce bacteriocins. One of the best sources of producing bacteriocins is Lactobacillus. The aim of this study was to isolate and purify bacteriocin from Lactobacillus rhamnosus and assess its effects on Pseudomonas aeruginosa and synthesis of its lipopolysaccharide. Methods: L. rhamnosus was prepared and cultured at MRS broth and incubated at 37ºC for 24 hours. Then, the medium was centrifuged for the isolation of bacteriocin and the supernatant was considered as bacteriocin. Antibacterial properties of different concentrations of bacteriocin (50, 100, 200, and 400 μg/mL) against P. aeruginosa were assayed by using agar diffusion and broth micro dilution methods. Also, the effect of bacteriocin against lipopolysaccharide synthesis in P. aeruginosa was analyzed by using one unit of minimum inhibitory concentration (MIC) for bacteriocin. Results: The results showed that all bacteriocin concentrations had antibacterial activity against P. aeruginosa. The MIC value was 31.25 μg/mL and minimal bactericidal concentration (MBC) was 62.5 μg/mL. Also, the synthesis of lipopolysaccharide decreased during P. aeruginosa growth period, and it reached zero after 5 hours. Conclusions: The results of this study showed the antibacterial effect of bacteriocin isolated from L. rhamnosus against P. aeruginosa. In addition, this bacteriocin prevented the lipopolysaccharide synthesis in P. aeruginosa.","PeriodicalId":8689,"journal":{"name":"Avicenna Journal of Clinical Microbiology and Infection","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect of Bacteriocin Isolated From Lactobacillus rhamnosus on Pseudomonas aeruginosa Lipopolysaccharides\",\"authors\":\"Hafizeh Haghighatafshar, R. Talebi, A. Tukmechi\",\"doi\":\"10.34172/ajcmi.2021.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Bacteriocins are heterogeneous inhibitory substances that could affect the bacteria belonging to the same genus. Both gram-positive and gram-negative bacteria produce bacteriocins. One of the best sources of producing bacteriocins is Lactobacillus. The aim of this study was to isolate and purify bacteriocin from Lactobacillus rhamnosus and assess its effects on Pseudomonas aeruginosa and synthesis of its lipopolysaccharide. Methods: L. rhamnosus was prepared and cultured at MRS broth and incubated at 37ºC for 24 hours. Then, the medium was centrifuged for the isolation of bacteriocin and the supernatant was considered as bacteriocin. Antibacterial properties of different concentrations of bacteriocin (50, 100, 200, and 400 μg/mL) against P. aeruginosa were assayed by using agar diffusion and broth micro dilution methods. Also, the effect of bacteriocin against lipopolysaccharide synthesis in P. aeruginosa was analyzed by using one unit of minimum inhibitory concentration (MIC) for bacteriocin. Results: The results showed that all bacteriocin concentrations had antibacterial activity against P. aeruginosa. The MIC value was 31.25 μg/mL and minimal bactericidal concentration (MBC) was 62.5 μg/mL. Also, the synthesis of lipopolysaccharide decreased during P. aeruginosa growth period, and it reached zero after 5 hours. Conclusions: The results of this study showed the antibacterial effect of bacteriocin isolated from L. rhamnosus against P. aeruginosa. In addition, this bacteriocin prevented the lipopolysaccharide synthesis in P. aeruginosa.\",\"PeriodicalId\":8689,\"journal\":{\"name\":\"Avicenna Journal of Clinical Microbiology and Infection\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Clinical Microbiology and Infection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/ajcmi.2021.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Clinical Microbiology and Infection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/ajcmi.2021.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

背景:细菌素是对同一属细菌均有抑制作用的异质物质。革兰氏阳性和革兰氏阴性细菌都产生细菌素。乳杆菌是产生细菌素的最佳来源之一。本研究旨在从鼠李糖乳杆菌中分离纯化细菌素,并评价其对铜绿假单胞菌及其脂多糖合成的影响。方法:制备鼠李糖,MRS肉汤培养,37℃孵育24小时。然后将培养基离心分离细菌素,将上清液作为细菌素。采用琼脂扩散法和肉汤微稀释法测定不同浓度细菌素(50、100、200、400 μg/mL)对铜绿假单胞菌的抑菌性能。以细菌素的最小抑制浓度(MIC)为单位,分析了细菌素对铜绿假单胞菌脂多糖合成的影响。结果:各细菌素浓度对铜绿假单胞菌均有抑菌活性。MIC值为31.25 μg/mL,最小杀菌浓度(MBC)为62.5 μg/mL。在P. aeruginosa生长期间,脂多糖的合成减少,5 h后为零。结论:鼠李糖细菌素对铜绿假单胞菌有一定的抑菌作用。此外,该菌素还能抑制铜绿假单胞菌脂多糖的合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Bacteriocin Isolated From Lactobacillus rhamnosus on Pseudomonas aeruginosa Lipopolysaccharides
Background: Bacteriocins are heterogeneous inhibitory substances that could affect the bacteria belonging to the same genus. Both gram-positive and gram-negative bacteria produce bacteriocins. One of the best sources of producing bacteriocins is Lactobacillus. The aim of this study was to isolate and purify bacteriocin from Lactobacillus rhamnosus and assess its effects on Pseudomonas aeruginosa and synthesis of its lipopolysaccharide. Methods: L. rhamnosus was prepared and cultured at MRS broth and incubated at 37ºC for 24 hours. Then, the medium was centrifuged for the isolation of bacteriocin and the supernatant was considered as bacteriocin. Antibacterial properties of different concentrations of bacteriocin (50, 100, 200, and 400 μg/mL) against P. aeruginosa were assayed by using agar diffusion and broth micro dilution methods. Also, the effect of bacteriocin against lipopolysaccharide synthesis in P. aeruginosa was analyzed by using one unit of minimum inhibitory concentration (MIC) for bacteriocin. Results: The results showed that all bacteriocin concentrations had antibacterial activity against P. aeruginosa. The MIC value was 31.25 μg/mL and minimal bactericidal concentration (MBC) was 62.5 μg/mL. Also, the synthesis of lipopolysaccharide decreased during P. aeruginosa growth period, and it reached zero after 5 hours. Conclusions: The results of this study showed the antibacterial effect of bacteriocin isolated from L. rhamnosus against P. aeruginosa. In addition, this bacteriocin prevented the lipopolysaccharide synthesis in P. aeruginosa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Detection of Microsporidia in Cattle in Jahrom, Iran Molecular Detection of Hospital-Acquired Methicillin-Resistant Staphylococcusaureus Isolated From Teaching Hospitals in Damascus, Syria The Molecular Investigation of the mecA Gene and Antibiotic Susceptibility Pattern of Staphylococcus aureus and Staphylococcus epidermidis Isolated from Patients with Immune System Disorders at Omid Hospital, Isfahan, Iran Antimicrobial and Anti-pathogenic Activity of New Naphtho [1,2,4] Triazol-Thiadiazin Derivatives Genotypic Investigation of Antibiotic Resistant blaOXA-4 Gene in Clinical Isolates of Pseudomonas aeruginosa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1