gan生成的网络流量可以用来训练流量异常分类器吗?

Pasquale A. T. Zingo, A. Novocin
{"title":"gan生成的网络流量可以用来训练流量异常分类器吗?","authors":"Pasquale A. T. Zingo, A. Novocin","doi":"10.1109/IEMCON51383.2020.9284901","DOIUrl":null,"url":null,"abstract":"Recent attempts to introduce the Generative Adversarial Network (GAN) to the computer network traffic domain have shown promise, including several frameworks which generate realistic traffic. This paper presents the ‘GAN vs Real (GvR) score’, a task-based metric which quantifies how well a traffic GAN generator informs a classifier compared to the original data. This metric is derived from the ‘Train-on-Synthetic, Test-on-Real’ (TSTR) method, with the added step of comparing the TSTR accuracy to the performance of the same classifier trained on real data and tested on real data. We use this framework to evaluate the B-WGAN-GP model for generating NetFlow traffic records using several stock classifiers. Using GvR we conclude that it is possible to train accurate traffic anomaly detectors with GAN-generated network traffic data.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"56 1","pages":"0540-0545"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Can GAN-Generated Network Traffic be used to Train Traffic Anomaly Classifiers?\",\"authors\":\"Pasquale A. T. Zingo, A. Novocin\",\"doi\":\"10.1109/IEMCON51383.2020.9284901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent attempts to introduce the Generative Adversarial Network (GAN) to the computer network traffic domain have shown promise, including several frameworks which generate realistic traffic. This paper presents the ‘GAN vs Real (GvR) score’, a task-based metric which quantifies how well a traffic GAN generator informs a classifier compared to the original data. This metric is derived from the ‘Train-on-Synthetic, Test-on-Real’ (TSTR) method, with the added step of comparing the TSTR accuracy to the performance of the same classifier trained on real data and tested on real data. We use this framework to evaluate the B-WGAN-GP model for generating NetFlow traffic records using several stock classifiers. Using GvR we conclude that it is possible to train accurate traffic anomaly detectors with GAN-generated network traffic data.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"56 1\",\"pages\":\"0540-0545\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近将生成对抗网络(GAN)引入计算机网络流量领域的尝试显示出了希望,包括几个生成现实流量的框架。本文提出了“GAN vs Real (GvR)分数”,这是一种基于任务的度量,用于量化与原始数据相比,交通GAN生成器通知分类器的程度。这个度量来源于“合成训练,真实测试”(TSTR)方法,增加了将TSTR精度与在真实数据上训练和测试的同一分类器的性能进行比较的步骤。我们使用该框架来评估B-WGAN-GP模型,该模型使用几个存量分类器生成NetFlow流量记录。使用GvR,我们得出结论,可以用gan生成的网络流量数据训练准确的流量异常检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can GAN-Generated Network Traffic be used to Train Traffic Anomaly Classifiers?
Recent attempts to introduce the Generative Adversarial Network (GAN) to the computer network traffic domain have shown promise, including several frameworks which generate realistic traffic. This paper presents the ‘GAN vs Real (GvR) score’, a task-based metric which quantifies how well a traffic GAN generator informs a classifier compared to the original data. This metric is derived from the ‘Train-on-Synthetic, Test-on-Real’ (TSTR) method, with the added step of comparing the TSTR accuracy to the performance of the same classifier trained on real data and tested on real data. We use this framework to evaluate the B-WGAN-GP model for generating NetFlow traffic records using several stock classifiers. Using GvR we conclude that it is possible to train accurate traffic anomaly detectors with GAN-generated network traffic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Financial Time Series Stock Price Prediction using Deep Learning Development of a Low-cost LoRa based SCADA system for Monitoring and Supervisory Control of Small Renewable Energy Generation Systems A Systematic Literature Review in Causal Association Rules Mining Distance-Based Anomaly Detection for Industrial Surfaces Using Triplet Networks Analysis of Requirements for Autonomous Driving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1