具有小型化三角形金属接平面的紧凑型高增益多波段领结槽天线

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2021-01-01 DOI:10.47037/2021.aces.j.360717
Z. Dayo, Q. Cao, Yi Wang, P. Soothar, I. A. Khoso, Gulab Shah, Muhammad Aamir
{"title":"具有小型化三角形金属接平面的紧凑型高增益多波段领结槽天线","authors":"Z. Dayo, Q. Cao, Yi Wang, P. Soothar, I. A. Khoso, Gulab Shah, Muhammad Aamir","doi":"10.47037/2021.aces.j.360717","DOIUrl":null,"url":null,"abstract":"This paper presents a new compact, high gain and multiband planar bowtie slot antenna. The antenna structure comprises of dielectric substrate, copper conducting sheet, fillet triangular-shaped slots, and a chamfered metallic ground plane. The proposed antenna model is fed with the 50 Ω standard grounded coplanar waveguide (GCPW) feedline. The designed antenna is low profile with compact dimensions of 0.379λ×0.186λ×0.012λ at 2.39 GHz frequency. Stable multi-resonant behavior of frequencies is obtained with the material selection, slots dimensions and position. Moreover, the parametric study has been carried out in order to validate the frequency tuning mechanism and impedance matching control. The novelty of designed antenna lies in high performance features which have been achieved with ultra-compact (0.039λ×0.022λ) modified triangular shaped metallic ground plane. The proposed antenna is fabricated and experimentally verified. The antenna key features in terms of return loss, surface current distribution, peak gain, radiation efficiency and radiation patterns have been analyzed and discussed. The designed radiator exhibits the excellent performance including strong current density, peak realized gain of 6.3 dBi, 95% radiation efficiency, wide fractional bandwidth of 39.5% and good radiation characteristics at in-band frequencies. The simulation and measured results are in good agreement and hence make the proposed antenna a favorable candidate for the advanced heterogeneous wireless communication applications.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Compact High Gain Multiband Bowtie Slot Antenna with Miniaturized Triangular Shaped Metallic Ground Plane\",\"authors\":\"Z. Dayo, Q. Cao, Yi Wang, P. Soothar, I. A. Khoso, Gulab Shah, Muhammad Aamir\",\"doi\":\"10.47037/2021.aces.j.360717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new compact, high gain and multiband planar bowtie slot antenna. The antenna structure comprises of dielectric substrate, copper conducting sheet, fillet triangular-shaped slots, and a chamfered metallic ground plane. The proposed antenna model is fed with the 50 Ω standard grounded coplanar waveguide (GCPW) feedline. The designed antenna is low profile with compact dimensions of 0.379λ×0.186λ×0.012λ at 2.39 GHz frequency. Stable multi-resonant behavior of frequencies is obtained with the material selection, slots dimensions and position. Moreover, the parametric study has been carried out in order to validate the frequency tuning mechanism and impedance matching control. The novelty of designed antenna lies in high performance features which have been achieved with ultra-compact (0.039λ×0.022λ) modified triangular shaped metallic ground plane. The proposed antenna is fabricated and experimentally verified. The antenna key features in terms of return loss, surface current distribution, peak gain, radiation efficiency and radiation patterns have been analyzed and discussed. The designed radiator exhibits the excellent performance including strong current density, peak realized gain of 6.3 dBi, 95% radiation efficiency, wide fractional bandwidth of 39.5% and good radiation characteristics at in-band frequencies. The simulation and measured results are in good agreement and hence make the proposed antenna a favorable candidate for the advanced heterogeneous wireless communication applications.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2021.aces.j.360717\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360717","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种新型的结构紧凑、高增益、多频带的平面领结槽天线。天线结构包括介电基板、铜导电片、圆角三角形槽和倒角金属接平面。该天线模型采用50 Ω标准接地共面波导(GCPW)馈线馈电。设计的天线外形小巧,尺寸为0.379λ×0.186λ×0.012λ,工作频率为2.39 GHz。选择合适的材料、槽的尺寸和位置,得到了稳定的频率多谐振特性。此外,为了验证频率调谐机制和阻抗匹配控制,还进行了参数化研究。设计天线的新颖性在于其高性能特性,这些特性是通过超紧凑(0.039λ×0.022λ)改进的三角形金属接平面实现的。制作了该天线并进行了实验验证。对天线的回波损耗、表面电流分布、峰值增益、辐射效率和辐射方向图等关键特性进行了分析和讨论。设计的辐射器具有强电流密度、峰值实现增益6.3 dBi、辐射效率95%、39.5%的宽分数带宽和良好的带内辐射特性等优良性能。仿真结果与实测结果吻合良好,使该天线成为先进异构无线通信应用的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Compact High Gain Multiband Bowtie Slot Antenna with Miniaturized Triangular Shaped Metallic Ground Plane
This paper presents a new compact, high gain and multiband planar bowtie slot antenna. The antenna structure comprises of dielectric substrate, copper conducting sheet, fillet triangular-shaped slots, and a chamfered metallic ground plane. The proposed antenna model is fed with the 50 Ω standard grounded coplanar waveguide (GCPW) feedline. The designed antenna is low profile with compact dimensions of 0.379λ×0.186λ×0.012λ at 2.39 GHz frequency. Stable multi-resonant behavior of frequencies is obtained with the material selection, slots dimensions and position. Moreover, the parametric study has been carried out in order to validate the frequency tuning mechanism and impedance matching control. The novelty of designed antenna lies in high performance features which have been achieved with ultra-compact (0.039λ×0.022λ) modified triangular shaped metallic ground plane. The proposed antenna is fabricated and experimentally verified. The antenna key features in terms of return loss, surface current distribution, peak gain, radiation efficiency and radiation patterns have been analyzed and discussed. The designed radiator exhibits the excellent performance including strong current density, peak realized gain of 6.3 dBi, 95% radiation efficiency, wide fractional bandwidth of 39.5% and good radiation characteristics at in-band frequencies. The simulation and measured results are in good agreement and hence make the proposed antenna a favorable candidate for the advanced heterogeneous wireless communication applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1