利用自适应神经网络提高低成本GPS接收机的定位精度

M. Mosavi, K. Mohammadi
{"title":"利用自适应神经网络提高低成本GPS接收机的定位精度","authors":"M. Mosavi, K. Mohammadi","doi":"10.1109/SCORED.2002.1033123","DOIUrl":null,"url":null,"abstract":"We study a way of using a low cost GPS receiver for position determination and propose a neural network for better positioning accuracy. First we define the GPS system errors. Then measuring the components of the position errors, a real and dynamic pattern of the errors is created and feed into the neural networks. These neural networks are taught with such real data to predict the errors of later seconds. The stages of neural networks implementation and the result of the tests are stated with real data. They show the errors of the position components decrease due to the training of the neural networks.","PeriodicalId":6865,"journal":{"name":"2016 IEEE Student Conference on Research and Development (SCOReD)","volume":"220 1","pages":"322-325"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improve the position accuracy on low cost GPS receiver with adaptive neural networks\",\"authors\":\"M. Mosavi, K. Mohammadi\",\"doi\":\"10.1109/SCORED.2002.1033123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a way of using a low cost GPS receiver for position determination and propose a neural network for better positioning accuracy. First we define the GPS system errors. Then measuring the components of the position errors, a real and dynamic pattern of the errors is created and feed into the neural networks. These neural networks are taught with such real data to predict the errors of later seconds. The stages of neural networks implementation and the result of the tests are stated with real data. They show the errors of the position components decrease due to the training of the neural networks.\",\"PeriodicalId\":6865,\"journal\":{\"name\":\"2016 IEEE Student Conference on Research and Development (SCOReD)\",\"volume\":\"220 1\",\"pages\":\"322-325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCORED.2002.1033123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2002.1033123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种利用低成本的GPS接收机进行定位的方法,并提出了一种神经网络来提高定位精度。首先定义GPS系统误差。然后测量位置误差的分量,生成一个真实的、动态的误差模式,并将其输入神经网络。这些神经网络被教导用这些真实的数据来预测后面几秒钟的错误。用实际数据说明了神经网络的实现阶段和测试结果。结果表明,由于神经网络的训练,位置分量的误差减小了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improve the position accuracy on low cost GPS receiver with adaptive neural networks
We study a way of using a low cost GPS receiver for position determination and propose a neural network for better positioning accuracy. First we define the GPS system errors. Then measuring the components of the position errors, a real and dynamic pattern of the errors is created and feed into the neural networks. These neural networks are taught with such real data to predict the errors of later seconds. The stages of neural networks implementation and the result of the tests are stated with real data. They show the errors of the position components decrease due to the training of the neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pedestrian detection and tracking with boosted HOG classifiers and Kalman filter Advanced inter-cell interference management technologies in 5G wireless Heterogeneous Networks (HetNets) Intelligent automatic starting engine based on voice recognition system Development of algorithm to characterize flavonoids classes Effect of substrates temperature on structural and optical properties indium tin oxide prepared by RF magnetron sputtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1