一种基于鲁棒混合机器学习的风电产量估算建模技术

A. Banerjee, I. Abu-Mahfouz, Jianyan Tian, A. E. Rahman
{"title":"一种基于鲁棒混合机器学习的风电产量估算建模技术","authors":"A. Banerjee, I. Abu-Mahfouz, Jianyan Tian, A. E. Rahman","doi":"10.1115/imece2022-94173","DOIUrl":null,"url":null,"abstract":"\n The need to accurately estimate wind power is essential to the design and deployment of individual wind turbines and wind farms. The estimation problem is framed as wind power curve modeling. Lately, machine learning techniques have been used to model power curves and provide power estimates. Such models rely on the fact that all outliers are removed from the raw wind data before they are used in modeling and estimation since outliers can adversely affect performance. However, generating outlier-free data is not always possible. Robust models and robust objective functions can be two effective ways to obtain accurate power curves in the presence of outliers. In this paper, a robust density-based clustering technique (DBSCAN) to first identify outliers in the dataset is proposed, followed by artificial neural network (ANN) models that are trained using the outlier-free data to obtain accurate power curve estimates. ANNs are trained using a range of optimization methods and are compared in this study. Preliminary results show the proposed method is superior to probabilistic models that use error-functions to generate accurate power curves and that the proposed hybrid model can generate more accurate power output estimations in the presence of outliers compared to deterministic models such as integrated curve fitting models that are known to be robust.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Hybrid Machine Learning-Based Modeling Technique for Wind Power Production Estimates\",\"authors\":\"A. Banerjee, I. Abu-Mahfouz, Jianyan Tian, A. E. Rahman\",\"doi\":\"10.1115/imece2022-94173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The need to accurately estimate wind power is essential to the design and deployment of individual wind turbines and wind farms. The estimation problem is framed as wind power curve modeling. Lately, machine learning techniques have been used to model power curves and provide power estimates. Such models rely on the fact that all outliers are removed from the raw wind data before they are used in modeling and estimation since outliers can adversely affect performance. However, generating outlier-free data is not always possible. Robust models and robust objective functions can be two effective ways to obtain accurate power curves in the presence of outliers. In this paper, a robust density-based clustering technique (DBSCAN) to first identify outliers in the dataset is proposed, followed by artificial neural network (ANN) models that are trained using the outlier-free data to obtain accurate power curve estimates. ANNs are trained using a range of optimization methods and are compared in this study. Preliminary results show the proposed method is superior to probabilistic models that use error-functions to generate accurate power curves and that the proposed hybrid model can generate more accurate power output estimations in the presence of outliers compared to deterministic models such as integrated curve fitting models that are known to be robust.\",\"PeriodicalId\":23629,\"journal\":{\"name\":\"Volume 6: Energy\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-94173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-94173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确估计风力的需求对于单个风力涡轮机和风力发电场的设计和部署至关重要。估计问题被框定为风电功率曲线建模。最近,机器学习技术已被用于建模功率曲线并提供功率估计。这些模型依赖于这样一个事实,即在建模和估计中使用原始风数据之前,所有的异常值都是从原始风数据中去除的,因为异常值会对性能产生不利影响。然而,生成无离群值的数据并不总是可能的。鲁棒模型和鲁棒目标函数是获得存在异常值时精确功率曲线的两种有效方法。本文提出了一种基于密度的鲁棒聚类技术(DBSCAN),首先识别数据集中的异常值,然后使用无异常值数据训练人工神经网络(ANN)模型,以获得准确的功率曲线估计。人工神经网络使用一系列优化方法进行训练,并在本研究中进行了比较。初步结果表明,该方法优于使用误差函数生成精确功率曲线的概率模型,并且与已知具有鲁棒性的确定性模型(如集成曲线拟合模型)相比,该混合模型可以在存在异常值的情况下生成更准确的功率输出估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Robust Hybrid Machine Learning-Based Modeling Technique for Wind Power Production Estimates
The need to accurately estimate wind power is essential to the design and deployment of individual wind turbines and wind farms. The estimation problem is framed as wind power curve modeling. Lately, machine learning techniques have been used to model power curves and provide power estimates. Such models rely on the fact that all outliers are removed from the raw wind data before they are used in modeling and estimation since outliers can adversely affect performance. However, generating outlier-free data is not always possible. Robust models and robust objective functions can be two effective ways to obtain accurate power curves in the presence of outliers. In this paper, a robust density-based clustering technique (DBSCAN) to first identify outliers in the dataset is proposed, followed by artificial neural network (ANN) models that are trained using the outlier-free data to obtain accurate power curve estimates. ANNs are trained using a range of optimization methods and are compared in this study. Preliminary results show the proposed method is superior to probabilistic models that use error-functions to generate accurate power curves and that the proposed hybrid model can generate more accurate power output estimations in the presence of outliers compared to deterministic models such as integrated curve fitting models that are known to be robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ammonia for Industrial Combustion A Method to Account for the Effects of Thermal Osmosis in PEM Fuel Cells Optimization of Supercritical CO2 Cycle Combined With ORC for Waste Heat Recovery Improving the Yield of Biodiesel Production Using Waste Vegetable Oil Considering the Free Fatty Acid Content Flame Propagation Analysis of Anhydrous and Hydrous Ethanol in an Optical Spark Ignition Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1